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ABSTRACT

The object of this investigation is to treat the problem of hyper-
elastic pure bending. The approximate assumptions used in previous
solutions are avoided. The ordinary stress strain relationship usually
used in such a case is not applicable in the hyper-elastic state and
therefore the true stress true strain relationship was tried. Inci-
dently some relations governing the stress, strain, slope at necking
and the strain hardening exponent for the true stress true strain dia-
gram in tension were obtained. These relations, derived mathematically
and verified experimentally, are based on different assumptions from
those given in the literature. The treatment of hyper-elastic pure
bending by the new theory was carried out for beams of square, square
on edge, circular, and trapezoidal cross sections. As an application,
analytical computations followed by exverimental tests were made for
beams of square cross sections of mild steel, stainless steel, aluminum
and magnesium. The theoretical values and the experimental results show
close agreement for all tahe materials, which proves the genaerality of
the method. To show the use of this new hyper-elastic pure bending
method, a treatment for spring back curvature was developed; this can
give the value of the required moment and the d&ie radius for any re-
quired radius of a bent beam. As an application for this forming
operation, computation resulting in handy graphs were made for beams
of square cross sections of mild steel, stainless steel, aluminum and

magnesium. Moreover, since it was necessary to obtain the data of



tension, compression and bending tests for all the tested materials, a
comparlison between tension and compression yield strength and the bend-
ing stress at beginning of yielding could be made. This shows that they
are all practically equal to each other. This result--obtained by the
use of several metals-—disproves the observation found by some investi-

gators that the begiming of yielding in bending is LOZ higher than the
tensile yield strength.

xii



HYPER-ELASTIC PURE BENDING TREATED BY THE
TRUB-STRESS TRUE-STRAIN RELATIONSHIP

INTRODUCTEON

Hyper-elastic pure bending is the pure bending action above the
proportional 1limit of the material i.e. in the elastic-plastic and
plastic states. The idea of treating this problem came to the writer
while conducting bending tests on mild steel beams in 1947 at the
materials laboratory of Fouad 1lst University, Giza, Egypt. The results
of these tests showed marked increase in the value of the moment of
resistance above that given by the methods developed in the literature.
The experiments were carried out carefully and repeated, and still the
same results were obtained. It seemed then that the basis and assump-
tions used in the literature are different from the actual action,
causing this decrease in the computed moment. These methods were
worked on the basis of using the ordinary stress-strain relationship.
Since this is based on the original area and original strain, then it
does not agree with the action in the hyper-elastic state. Which
relationship may we try?

The object of this investigation is to apply the true stress true
strain relationship to the problem of hyper-elastic pure bending and to
use the relationship in such a form that simplifies the analytical com-
putations. The treatment is based on the assumptions listed in detail

in Chapter II. The approximate assumptions used in other treatments

were avoided.



The detailed work including some interesting new aspects of the
true-stress true~strain relations, analytical computations for different
cross sections and experimental verification of the new theory for square
cross sections of four different metals, application to forming of bent
beams, and a comparison between yielding in tension, compression and

bending are treated in the following chapters.



CHAPTER 1

Stress-Strain Relationship

l. Review of Literature.

The stress-strain relations of a material in tension and compression
are the main and essential requirements to define the behavior of this
material if subjected to static loads. Since the engineer has continuous-
ly striven to improve design and increase the efficiency of various types
of engineering structures and operations, the stress-strain diagrams in
tension and compression have gained and still hold the interest of many
investigators in the field of materials. In 1680, Hooke made the state-
ment due to his observations that the elongation is proportional to the
load, "Ut tensio sic vis" (as the extension, so is the force). Engineers
still use the more general form that the stress is proportional to the
strain in the elastic state of stress.l* Hooke, therefore, began the
study of the stress-strain relationship and other investigators followed

2,3,4,5

the same path. Their results are equations based on good fit of

experimental data of ordinary stress-strain diagrams of tension and com-

pression tests (Fig. 1) where the stress = —- Applied Load
Original cross sectional area

and the corresponding strain is = Measured length - original length
.. Original length

These eqations give stress in terms of strains or vice versa, having
parameters which differ for different materials as obtained by fitting
the experimental data. The curve represented by a given equation goes
through the origin and has a slope there equal to the modulgus of

elasticity. A review of some of these relationships between stress and

strain in tension or compression is given in Table 1.

*
Superscript numbers refer to the Bibliography, page 161.
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Table 1

Stress—-Strain Relationships

Name of Investigator Year Stress-Strain Relationship
Hooke 1680 e = 5
p n
Bulffingeri 1729 € = KN '
. = _-é-" »
Riccati 1731 s = Ke ae
s = (x)e T )
2
Gerstaer 1831 S . € + beé
, P = 3
Poncelet 1841 e = S[r+B(e -1 ]
Wertheim 1847 €’ . x5+ BS5°
Hodgkinson 1849 S - € rb€?, 3 aé?
Cox 1851 e - .S’/(|+°<S)
4 .2 3
€ = S+ [SIN - Y:S'
! v 2 f3
‘ ' =< 5
Imbert 1880 € =t(z)e -1)
ac’
Hartig 1893 s = (F)e - 1)
5 =(55)€
'm 2
Schula 1898 s =ae€e” + be
£ I 4
Prager 1939 S sa€t+btanh[l3=]-€

b
Holmquist & Nadai 1939 e’ 5

S#‘K(S"Sp) S%SP

W

——
m'\
U

¢ - o<s+/3[(e)’—‘-51'$’ -]
Ramberg & Osgood 1943 € =85 + K3 ?
Rao & Leggett 1946 e =5 +B(cshxy -1)
* a, b,.c, d, < and 8 are constants determined experimentally for each
n/latenal. ,
/E = ordinary strain N = %. E = Modulus of elasticity

0~ = ordinary stress
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In 194k, MacGregor7’ showed that, from yielding of the material in
tension up to its failure, the true--stress true- strain diagram shown in

Fig. 2 is the diagram which best describes the relationship between stress

d strain. The t stress = £ = : _Load -
an rain e true A Cross Sec. Area at time of this loading
L

ol -
and the true strain = > L, ° { L‘Z‘__l:- = log. 7’:_0 .
(-]

where L, = original length, L = 1length at time of loading. It is
considered that the deformations happen in the plastic region without
change in volume, i.e. Poisson's ratio = 0.5. AbLo = A-L

A, = original cross sectional area and A = Measured area at time of

loading.
Therefore Ay = L |
A L,
Then true strain = 10g L = log 4o
Lo e

2 log Bg for a circular cross section
D

where D, = original diameter, D = diameter at time of loading .

8

Hollomon™ stated that the true-stress true-strain relationship, from

yield point up to the maximum load just before neclkdng, is in the form
of a curve represented by g~ = (L.€’7 and this relationship from

maximum load (necking) up to failure is a straight line tangent to the

previously mentioned curve.

2. Discussion of the Stress-Strain Relationship.

Although most of the previously mentioned equations of stress and

strain based on the ordinary stress-strain diagram are not in an easy,



simple form, their use has also been limited by the mathematical diffi-
culties encountered in applying them to specific engineering problems.
Besides, these equations tend to show discrepancies from the yield point
of the material up to its failure, since they are based on the original
cross section and original gage length, both of which change materially
in this region. They can be applied to engineering problems in the
elastic region only and their application beyond this region is for
their historical sigmificance. Consequently the true- stress true strain
diagram can correctly fill this gap and can be applied in the hyper-
elastic region since it is based on the true stress and the true straln.
Then in what form will be the equation which describes the behavior
of any material? It is known from experiments and the literature9 that
a material under tension or compression till failure passes thru the
elastic, elastic plastic, and plastic states. The elastic state is the
case where the fibers of the material elongate or contract and can
return to their criginal state upon removal of the load. The elastic-
rlastic state is the case where the material is changed from elastic to
plastic, its grains break and slide in different directions. This is
an unstable processlo and the material cannot regain its original shape
upon removal of the load. The plastic state is where the crystals
resulting from grain fracture slide in one direction due to the dis-

location of the atOms.9’ll’12

If the load is removed, the material
possesses distinct deformation.
Therefore the equation of the relationship of stress and strain for

a given material should be composed of three equations, each describing



its state--either elastic, elastic plastic, or plastic. In this way the
characteristic of the material is accurately defined all over its range

of stress up to failure.

3. Proposed Stress-Strain Relationship.

The relationship mentioned above generally will be a straight line
equation for the elastic region based on the original stress diagram
data, an equation of a curve or equations of a curve and straight line
for the elastic plastic region based on the true--stress true-strain
diagram, and an eguation of a straight line for the plastic region based
on the true-stress true-strain diagram as shown in Fig. 3.

Since we have two variables, stress ¢g— and strain € , what kind of
equation should we formulate: stress in terms of strain or strain in
terms of stress? The answer is the kind which is of practical use.
Since in most engineering problems we are always interested in the load
required for a certain structural part and since the strains at the
polnts of transition from elastic to elastic plastic and from elastic
plastic to plastic are a characteristic of each material whether for
tension or compression (as proved experimentally later), then the stress
in terms of the strain is the actual practical type. The proposed new

relationship of stress and strain will be:

€E=€; c €% €= €4
60— = [aé] + [bé ] '?[KE*J"]ae (1)
€=0 € =~ € € 2

as shown in Fig. 3, where:

6~ = +true stress € = true strain

en = strain at proportional limit which is chosen as the end of the

elastic region.
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€, = strain at the transition from elastic plastic to plastic state

€, = strain in the plastic region up to failure.
€, and €, are to be obtained for each material and they are constant for
this material as a part of its character.
a, b, ¢, k and m are constants determined from the good experimental
fit - a to the ordinary stress-strain diagram, and b, ¢, k and m to the
true-stress true-strain diagram. These coefficients are different in
tension from compression.

It may be noted that we cannot use the yield point or yield strength
to represent the end of elastic region since we lose proportionality
between stress and strain when we leave the proportional limit; besides
the yield point is affected by several factors and may be subjected to
slight errors due to the testing machines, their factors and speeds, and
to the investigators too. Moreover the stress strain diaéram from the
proportional limit to yield point is a curve which indicates that
fracture of some grains takes place.

The above proposed equation is in a simple form to describe the
behavior of the material. It is also general since it is adaptable
to many different materials by varying the value of its parameters
a, b, c, k; and m and introducing the correcponding values of E| and

€, for the material. It is also easy to apply, especially in case of
hyper-elastic bending and column analysis where it leads to integrals

that can be expressed in a closed form.
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h. Stress-Strain Relationship in Tension and Compression for Mild

Steel, Stainless Steel, Aluminum and Magnesium.

In order to.shaw the deduced equation in its practical form and
the ease of comparison between the behavior of different materials
in various states of stresses and between the behavior of different
specimens from the same cross section of the same material, tension
and compression tests for mild steel, stainless steel, aluminum, and
magnesium were conducted. Ordinary stress strain diagrams up to the
yielding region and true-stress true-strain diagrams were obtained.
Then the coefficients required in the previously proposed equation were

deduced from the data of these stress-strain diagrams.

A. Tests
The test equipment and procedure are as follows:
a. Machine. The machine used in the tension and compression
experiments is a Riehle machine. It is a lever type, well cali-
brated, having a capacity of 50,000# and min. reading of S#. It
is shown in Fig. 4.
b. Specimens. A bar 8 ft. long and approximately 2% x 2" in cross
section was sawed into three pieces each 32" long. The central piece
was used to prepare the tension and the compression specimens. Two
tension specimens were machined from this cross section 2% x 2"
one nmumber 3 from inside and the other number l from the outside
of the cross section. Similarly two compression specimens number
1 from the inside of the cross section and number 2 from the out-

side as shown in Fig. 5. The tension specimen was of a standard



FIG. 4 - RIEHLE TESTING MACHINE
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size, 0.505" diameter and 2" gage length. The compression specimen
was also of the standard size 0.798" diameter and 2 3/8" long. These
specimens are shown in Fig. 6.

c. Materials. The available materials, which were used in the tests,
are hot rolled mild steel, stainless steel, 1L S-F extruded aluminum,

and ZK60A extruded magnesium which was aged after extrusiom.

d. Strain Gages. SR-l electrical strain gages, type A-7, 1/L" gage

length, resistance 120 ohms, and gage factors 1.96 and 1.97 were used
to measure the strains up to the yielding region. Four gages were
placed longitudinally on the circumference of the central section of
each tension and compression specimen to measure the strain at four
di fferent points on the circumference of the cross section. The lead
wires for the gages were mounted on a circular plastic disc made in
two parts. The two parts forming the disc were cemented on the ten-
sion or compression using Duco household cement. The arrangement of
the gages on the tension and compression specimens and the plastic

discs for mounting the lead wires are shown in Figures 7 and 8.

e. Strain Indicator. A Baldwin type K strain indicator was used.

It has a range up to 30,000 micro-inches and can be read to 10 micro
inches. A micro inch and its multiples up to 10 can be approximated
by the eye. It is shown with a Baldwin Bridge balancing unit in
Fig. 9.

f. Micrometers. The diameter of the tension specimen was measured

throughout the plastic region with a micrometer having pointed anvils.
It could be read up to 0.001 in. and the readings can be approximated

to 0.0005 in. For the compression specimens, a micrometer having

flat ends which could be read to 0.0001 in. was used.



FIG.7 - TENSILE SPECIMENS

FIG. 8 - COMPRESSIVE SPECIMENS
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FIG. 9 - STRAIN INDICATOR ft BALANCING UNIT
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g- Tests procedure. The tension specimen was attached to the grips

of the machine; then an initial small load was applied to the speci-

men to hold it in position. An initial load within the elastic limit
of the material was applied cyclically at least four times to stabi-
lize the SR-Y strain gages and to minimize the zero shift. Then the
zero reading of each gage was recorded and also the initial diameter
of the specimen. The load was applied in increments and each time
the readings of the four SR-)} gages, the measurement of the diameter
of the specimen, and the machine load were recorded. When the yield-
ing region was passed and the range of the strain indicator exceeded,
machine load and the diameter of the specimen only were recorded till

the specimen failed.

The same procedure was applied to the compression test, except
in this case recording of data was stopped when the full capacity of
the machine, 50,000#, was reached. In this test two caps as shown

in Fig. 10 were used to assure the centering of the load on the

specimen.
The above mentioned tests were run using the slow speed of the
teating machine. Alsc all the readings were taken by the writer only.
B. Test Results

a. Ordinary Stress-Strain Diagrams. These diagrams are plotted

using the readings of the four SR-l;, gages and the machine load and
the original cross sectional area. From these plots shown in Figures
11 and 12 as a sample, and Figures 81 to 94 in the Appendix, we
conclude:

1. Yield strength for the specimen machined from the outer part of

the cross section is higher than the one for the inner part of
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FIG. 10 - CAPS FOR COMPRESSION SPECIMENS
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the cross section for mild steel and stainless steel and the
yield strength of the inner specimen is higher than the outer
one for aluminum and is equal to the outer in magnesium. This
result is the same for both tension and compression tests. The

percentage of increase is shown in Table 2.

2. The strain €; for the proportional limit for each material is
the same for compression as for tension.

3. The modulus of elasticity in tension and compression is practi-
cally the same for each material.

b. True stress true strain diagrams. These diagrams are plotted

using the true stress = Machine load _
Cross sec. area based on diam. measured
at this load

and the true strain = 2 log 22 for tension test and 2 log %
D (o}

for compression tests where D, = original diameter and D =
diameter measured at the corresponding load. These curves are shown
in Figures 13 and 14 for mild steel, as a sample, and the rest in
Figures 95 to 108 in the Appendix. From these diagrams we conclude:
1. The true stress-strain diagrams for outer specimens are differ-
ent from those of the inner specimens for all the materials.
For the mild steel, tension or compression tests, for a certain
strain the outside specimen shows higher stress than the inside
one. The same happens in the case of stainless steel and mag-
nesium. For the aluminum, the opposite result occurs, since it

is found that for a certain strain the inside specimen shows

higher stress than the outside.

21
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3.

The transition from elastic-plastic to plastic and from one
range in the elastic plastic region to another range in it, is
accompanied by a certain strain, the same for tension as for
compression specimens, irrespective of the varying stress at

this strain for different specimens--tension or compression,
outside, or inside. This (accompanied by result 2 of part a)
means that the strain at the transition from one state to another
(el or 62) is a constant value for each material, whatever the

type of stress or position of the specimen from the cross section.
The fact that this value acts as a characteristic of this material
is a basic assumption used in applying the true -stress true-strain

relationship to the problem at hand.

The stress at necking point in the tension tests (which corres-
ponds to the strain 652) is greater than the slope of the true
stress-true strain diagram at this point in contrast to that
given in the literature8 which states their equality.

Failure of the tested specimens.

The mild steel specimens in tension whether inside specimen or
outside specimen failed after necking as shown in Fig. 15.

The outer specimens of stainless steel in tension failed after
gradual necking whereas the inside specimens failed suddenly
having a V edge, as shown in Fig. 16.

The outside specimens of aluminum in tension as well as the
inside specimens failed at a sharp inclined 45° plane without
any appreciable necking as shown in Fig. 17.

The outside specimen as well as the inside of magnesium failed
in tension in a conical necking fracture with sharp edges as
shomm in Figure 19.

25



FIG. 15- MILD STEEL FRACTURE

umbwit

FIG. 16 - STAINLESS STEEL FRACTURE
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FIG. 177 - ALUMINUM FRACTURE

FIG. 18 -ALUMINUM COMPRESSIVE SPECIMENS
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FIG. 19-MAGNESIUM TENSILE FRACTURE

COMPRESSIVE FRACTURE
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5. The compression specimens of mild steel and stainless steel
after test bulged as usual, decreasing in length and having a

circular cross section all over their length.

6. The aluminmum specimens after testing in compression showed
distinct decrease in length accompanied with the change of
their cross section all over their lengths to a triangular
form as shown from Figures 10 and 18.

7. The magnesium compression specimens did not show appreciable

increase of diameter by increasing the load and they failed
and fractured as shown in Fig. 20 at 9 7, deformation.

8. The properties of the aluminum rod were not those normally ob-

tained from the structural grade of this material, and should
not be considered as typical.

C. Sample of Derivation of the Stress-Strain Relationship Equation From
Test Data.

The proposed equation is in the form:

€=€, c €=-€, €=€,
S T I L) e

c=°

Elastic Elastic Plastic Plastic
The elastic plastic state alsc may be represented by a curve and straight
line equations or vice versa according to the behavior of the material.
A sample derivation for the inside specimen number 3 of mild steel in

tension is as follows:

l. Elastic state. Using the ordinary stress-strain diagram Fig. 11,

Stress at proportional limit = 32,500 psi
Strain at proportional limit 61 = 0.0011 in/in

O = QL€
a = 5 = 32,500 . 9.7 x10° psi
€ 0.0011
6 € = 0.0011
Therefore the relation will bes: o~ = [?9-6 x lOéJ
e =0



Elastic plastic state. Using the part of the true stress true

strain diagram Fig. 13 in the elastic plastic region as shown
in Fig. 21, the part of this diagram from € = 0.0011 to
€ = 0.020 is a straight line. Its intersection with ¢~ axis =

32,000 and its slope = 192,000.
€=0,020
Therefore its equation will be: o~ = [_192,000 €+ 32,00(3
QsOoOOll

The other part of the true stress true strain diagram from

€ = 0.020 to € = 0.19 1is a curve whose coordinates as
obtained from Fig. 21 are:

o~ : Lo L5 50 55 60 65 70
€ 3 0.029 0.0L40 0.053 0.0705 0.093 0.122 0.170
Plotting these coordinates on log log paper, we get a straight
line as shown in Fig. 22. Therefore the equation of this curve is
in the form of o~ = bec

Lego~ = Log b 4 ¢ Loje

The same result of linearity is obtained when plotting ¢~ vs €

on log log paper for all the tested material in tension or in
compression as shown in Figures 109 to 116 in the Appendix.

To obtain the constants b and c, we substitute the coordinates
of any two points of the straight line shown in Fig. 22. Thus,
two equations are obtained which can be solved in b and c.

Take the two points o6~ : Lo 60

€

[ 1]

0.029 0.093
log 4O x 10° = log b + c log 0.029
log 60 x 103 = log b + c log 0.093
4.0621 = log b + 2.462L c

L.7782

log b + 2.9685 ¢

30
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Subtracting we get:

_ 0.1761 _ .
0.1761 = 0.5051 ¢ , ¢ = 5551 0.349 .

Substituting the value of ¢ in one of the above equations we get:
logb = L.7782+ 1.0315 x 0.349 = L.7782+ 0.36 = 5.1382
b = 137,500.
Therefore the equation of the curve will be:

0.349

€ =
o"’ = [ 137)500 - 6 ] .
€= 00020

0.190

Therefore the elastic plastic relation will be:

<= 0.020 0.3491€=0.190
o— = [ 192,000 € + 32,000 ] + [ 137,500 € }
e = 0.0011 = 0.020

Plastic state. Using the true stress strain diagram Fig. 27,
the relation is a straight line from € = 0.19 to € = 1.1l3.

The intersection of this line witho— axis = 60,000
Its slope = 60,000
E'—'l.lB
The relation will be: 0__/ - [60,0006 1.. 60,000} i
€= 0019

Therefore the relation between stress and strain for mild

steel in tension is represented by the equation:

€=0.0011 0.02
o = {29.6 x 106} i [192,000 € + 32,000] +
6:0 €= OoOOll
003).‘9 €= 0.190 E"lolB
+ (137,50 € 4+ | 60,000 €+60,000 (@)

€= 0.020 €=0.19
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The same procedures were applied to all the other specimens
tension or compression of mild steel, stainless steel, aluminum
and magnesium. The resulting equations showing the relation

between stress and strain are shown in Tables 3, 4, 5 and 6.

5. The Relation Between the Stress and the Slope of the True Stress
True Strain Diagram for the Tensile Specimen at Necking.

A. Theoretical Derivation.

It is noted in the literatur98 that the condition for the initia-
tion of localized deformation in a tensile specimen (necking) may be

expressed in the form a? = 0O (3)

where P = load applied to the specimen of cross section A.

Since the load is equal to the stress o~ times the area A,

then: P zo"- A , (L)
dP = d(e?A) = Ado” + o— dA = 0O . (5)
Therefore ¢— _ a0~ (6)
- gA
A
During the plastic deformation (up to necking) the volume remains
essentially constant and therefare:
d(A°*L) = AdL + LdA = O ’ (N
i.e. - dA = d = de€ (8)
A L

where L is the length of a small section of the specimen and

d€ 1is the increment of the true strain .
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Substituting equation 8 in equation 6, the following equation results:

= 4o
rnecking = ("E'é‘) necking (9
i.e. Stress at necking equals the slope of the true stress true strain
diagram at this point.

One may conclude from the previous derivation that the result

= do— . .
G—‘necking = (—'a"é'")necld.ng is based on the assumptions:

1. The volume remains constant during the plastic deformation.

2. dP at necking equals to zero.

" The first assumption describing the plastic deformation can be made
safely since it is based on experimental evidence. The second assump-
tion describing the increment of the load at necking seems to have
nothing to substantiate it. Also, it is realized that the load begins
to decrease at the first initiation of necking and therefore dP can not
equal zero but should be equal to a negative quantity. The following
derivation, based on the first assumption only and on the fact that dP

has a value, seems to hold at necking:

P

. A
dP = Ado— + o~ dA

or o~ = do” dp .
Y + ™ (10)
A
Introducing - .%é = de s then:
- do” dP



This relation holds over the entire range of the true stiress true

strain diagram and therefore:

= (5= (12)

necking de necking ( necking

i.e. The stress at necking for a tension specimen equals the slope
of the true stress true strain diagram at this point plus the rate of
change of the load with respect to the cross sectional area at
necking.

It is worthy to note that dP and dA at necking are both negative

quantities (since the area of the cross section is decreasing in the

tensile test); therefore gi is a positive quantity, which means
that the stress at necking is larger than the slope at necxing by the

value of _%%_ . The difference between our derivation shown in
equation 12 and that of the literature shown in equation 9, is in the

value of dP , which we assume to have a positive value; the litera-
dA

ture assumes it to be zero since dP equals zero. To clear this point
experimentally, the results of P and A of the previous tensile

tests carried out on mild steel, stainless steel, aluminum, and magnesium
were plotted in curves of P vs A. These curves are shown in Figures

23 and 2. The plots show discontimuous curves between P and A, of

such form that _dP cannot equal zero anywhere since no horizontal
dA

tangent can be drawn.

Further, we assumed that dP_  is a positive quantity. The
dA

following experimental observations will prove this and will define

Lo
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the value of _dgg.. . It is observed that necking begins when the

machine load and strains correspond to the point where the true
stress, true strain curve jJust leaves the elastic plastic state and
enters the plastic state, i.e. load P necking and strain € 2°
Referring to Figures 23 and 24, this load corresponds to the point "N"
where the discontirmous curve of P and A begins to decrease from its
highest peak and where the curvature of this curve changes its sign.

The slope at this point "N" is a positive quantity for the four materials

previously mentioned as shown in the Figures 23 and 24. Also the value
of .%PA;_ necking equals the value of the slope at the point of

contraflexure of the P and A diagram after the highest load is reached.
This means that necliding does not occur when the maximum load is reached
but occurs at point "N" defined previously after this load has been

passed.

B. Experimental Verification.

The previous tests made on mild steel, stainless steel, aluminum,
and magnesium give the values of stress at necking and the slope of the

true stress strain diagram at necking as shown in Table 7. These show

that < do” .
a G“necklng is not equal to ( e )necking but is greater than
this value. This means that the equation: ¢— = -0
“ ( der{ecld.ng (9)
does not hold and the equation: ¢ = _:-;;‘?é: + &£ (12) at necking,

where é—‘i is a positive value agrees with the experiments. Using the
value of ,é_di as previously explained and as shown in Figures 23 and 2k,

the agreement of this relation with the experimental results is very

close as shown in Table 8.



Values of Stress and Slope of True Stress True Strain Diagram at Necking

for Tension Specimens

Table 7

Material Position of Specimen Stress Slope
psi psi
Outside 75,000 69,000
Mild Steel
Inside 71,000 60,000
Outside 206, 900 190,000
Stainless Steel
Inside 203, 800 180,000
Outside 36,000 30,000
Aluminum
Inside 39,000 32,000
Outside 45,000 31,250
Magnesium
Inside L), 000 26,250




Table 8

Values of the Stress at Necking for Tensile Specimens

Material ’%é: , ._%i;.. Stress at Necking psi
Computed Experimentally
psi psi ge 4P (From true stress
v + Y true strain
diagram)
Mild Steel 69,000 7,500 76, 500 75,000
Stainless Steel 190,000 16,000 206,000 206,900
Aluminum 30,000 6,200 36,200 36,000
Magnesium 31,250 1k, 500 L5, 750 45,000

L5



C. Value of Strain at Necking for a Tensile Specimen.

It is shown in the literaturea, assuming ( 0,

dap ) =
dA / necking

that the strain at necking equals the strain hardening exponent as

follows:
o~ = b.e (13)
where ¢— = true stress € = true strain b = constant
¢ = strain hardening exponent (constant)
g - cb. &, (14)
For %i =0, o0 = 2%: > b.e® = ebSh (15)

Therefore: €

"
()

at necking. (16)

Since the value of é_‘i is not equal to zero as previously shown, then
the above result does not hold.

Using our derivation eguation (12) that:

. - do” + dpP 7
U"neck:mg ( de )necking ( dA )necldng (12)

and since the necking point falls on the true stress true strain diagram
which is defined by the equation (1) as shown in Fig. 3
o~ = k€ + m

where k = slope of true stress strain diagram = % )

m = intercept of the straight line portion of the true stress

true strain diagram extrapolated to the o~ axis .

Therefore o = _4do”
necking d € necking x eneck:’u‘xg + o, Q7

)
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Equating equation 112) and (17) then:

- (4P
m =
(dA ) necking

€ necking = 1 - (18)

5%)

de necking

The experimental results shown in Table 9 verify that € necking is not
equal to the strain hardening exponént. Applying the previous result
shown in equation (18) for the mild steel in tension as a sample, the
strain at necking is found to be 0.208 where as it is 0.19 as obtained
from the true stress true strain diagram,F&gb 13. The experimental
value of 0.19, the strain at which necking begins, was determined by
selecting the point on the true stress true strain diagram Fig. 13, at
which the graph changed from a curve to a straight line, this choice
being correlated and compared with the experimental observations of
the behavior of the load as applied by the machine as the test pro-
gressed.

This shows close agreement between the computed and experimental
value of the strain at necking. It is worthy to note that the differ-
ence between the two cases may be due to the experimental location of
the point of necking which is taken as the end of the elastic plastic
state curve given by the equation g~ = b.e? and the beginning of the
plastic straight line given by the equation ¢— = k€ + m. The point
of intersection of the curve and the straight line (necking point) may
vary according to personal Judgment. This Judgment will vary the strain

value but produc® negligible corresponding change in the value of the

stress at necking.
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It may be valuable to note that the same experimental results, obtained
for tensile tests with regpect to the stress and the slope of the true
stress true strain diagram and with respect to the true strain and the

strain hardening, holds again for the compressive tests as shown in

Table 10.



Table 9

Values of Strain at Necking of Tension Specimens and

the Values of Their Strain Hardening Exponent

Strain Strain Hardening

Material Position of Spec. at Necking Exponent

Outside 0.19 0.343
Mild Steel

Inside 0.19 0.349

Outside 0.1}4 0.233
Aluminum

Inside 0.14 0.249

Outside 0.0L 0.140
Magnesium

Inside 0.04 0.193

Outside 0.05 0.350
Stainless Steel

Inside 0.05 0.354

L9
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Table 10

Values of Stress, Strain, Slope of True Stress True Strain Diagram and
Strain Hardening Exponent for Compression Specimens at Transition from

Elastic Plastic to Elastic Region

) Position Strain
Material of Spec. Stress Slope Strain Hardening
Exponent
Outside 73,000 62,000 0.19 0.278
Mild Steel
Inside 72,000 60, 000 0.19 0.283
Outside 38,000 12,500 0.14 0.248
Aluminum
Inside 39,500 12,500 0.1h 0.243
Outside 31,000 140,000 0.04 0.0L47h
Magnesium

Inside 29,000 220,000 0.04 0.0L4l2




CHAPTER I1

Hyper-elastic Pure Bending

i. Introduction.

The classic theory of pure bending in which the bending stress is

calculated by the formula aj’ = _%§~ ( 0, = Bending stress, M =

Bending Moment, C = Extreme fiber distance from N.A., I = Moment of
inertia of the cross section about axis of flexure) was developed on the
basis of two assumptions:

(1) Plane transverse cross sections of a beam before bending remain
plane after bending, i.e. the elongation and contraction of the
longitudinal fibers are proportional to the distance from the
neutral axis.

(2) Hooke's law is valid,which means that there is a linear variation
of normal stress distribution along the depth of the cross section
of the beam varying from zero at the neutral axis to a maximum at

the extreme fiber.

For bending of beams the theoretical equation o7 = ¥C can be applied
within the elastic limit where the stress and the strain are linearly
related. However, when the extreme fiber stress of beams in pure bending
exceeds the proportional limit, this theory can no longer be applied
because the stress distribution over the cross section is no longer
linear but tends to follow the stress-strain characteristic of the

material. Therefore other theories were derived to treat this case as

will be explained later.

51
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2. Review of Literature.

Many authors have attacked the hyper-elastic pure bending problem
either analytically or senﬂ.-graphically.lB’ 14,15,16,117,18,19,20,21, 22,
23,24,25 All these solutions are based on the two following equations
of equilibrium:

(a) Tensile force = Compressive force i.e. = [, =0

(b) External Moment = Internal moment i.e. 2. My =o

These equations apply for any cross section at any stage of hyper-
elastic bending. It is also assumed that a plane transverse cross
section remains plane after hyper-elastic bending i.e. the elongation
and contraction of the longitudinal fibers are proportional to their
distances from the neutral axis. This assumption is backed by the
results of various experiments. Consider two parallel sections of a
beam close to one another. After bending these sections are no longer

parallel but make an angle d<X with each other.

Referring to Fig. 25, assuming dx = ds then:
€ ;x = tan dx = de (19)
€ dx = yd but dx = Qde
T =

where € = strain

y distance of strained fiber from N.A.

f = radius of curvature .

y = (€ and dy = ¢ ae . (21)



N D
(’- <€ = €E+C

FIG 25~ BEAM UNDER PURE BENDING
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Similarly D = ( (et €.) where € _ = Extreme tension strain

and €. = Extreme compression strain

D
i.@e e = . R (22)
€t+ ec

Applying the previously mentioned equations of equilibrium and referring
to Fig. 26 then:

(i) Tensile force = Compressive force

J Y
ie. f boody = CJ' bo dy

€
Tbode = e:j bo~ de 23

(ii) External moment = Internal moment

% €, 2 o
Mt=,cfbrd7*7 =€cfbﬁo~e €
2 € %
M, - e [Jooede +Jboede ] (2
t [~ o ©

The integrations of the equilibrium equations (23) and (2)) are solved
by using the relation between ¢~ and € either as obtained from the
ordinary stress strain diagram or from approximation of this diagram
as follows:

A. Solutions Based on Ordinary Stress Strain Diagram.

Solution 1.13 This solution assumes identical diagrams of stress
and strain for tension and compression as obtained from the data
of a tensile specimen. Also it neglects the effect of lateral
deformations, and considers no shift in the position of the neutral
axis. Applied for a rectangular croass section, having depth = D
and width = b the neutral axis is still at the center of the depth
D and €, the extreme tensile strain, will be equal to Ec » the

extreme compressive strain.

55



Assume €_t - EC = € then equation (24) will be:

2 €
M = _2_§_-D———" ] d—'—’e d€
t (Gt‘*ec )2 G‘)J‘

26D° €
+¥ ¢

dividing by —g— =(€¢+ €.)

M = L. ____———-—24' L€ = —'I-—' . E
e A TeT AT ojo—'e A€ g r (25)
where Er = 2ly -ej o ede€

(eﬁ' + ec)3 o
Er is called the reduced modulus and can be calculated applying

the graphical integration to the ordinary stress-strain diagram in

tension. I = Moment of inertia of the cross section about
axis of flexure . ©bpD3
12

€

This form of M = I . Er

t-——.

R

similar to that of the elastic bending where M

Radius of Curvature

for the hyper—-elastic moment is

= . B

L
N

where E = Young's modulus.

Solution 2.26 This solution is based on solution 1, but is put

into a practical form as follows:

€
rd € 2 t
M, - 222", Joede = 2b0 «Jc“Ede

n

2

(€t €) 4 €/
€
2 fo-ede 2 I
— b D . = = bD . K = 3(-—-—) . K
= > G: > C (26)
where I = 11)1233 », € = D/2
K = Moment of area under stress strain & agram divided

by the square of the strain in the outer fiber which
can be obtained graphically for any stress in the
outer fiber as shown on Fig. 27. K is called the
plastic bending factor.

56
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Solution 3.18 The moment of resistance My is obtained from the
equilibrium equations using the analytical relation between o—
and € for the ordinary stress strain diagram as illustrated in
Table 1, Chapter I. This solution has been limited by the mathe-
matical difficulties encountered in applying it to a specific

problem.

Solutions Based on Approximating the Crdinary Stress Strain

Diagram. (Assuming identical stress strain diagram in tension

and compression).

Solution 1. Rectangular distribution.27 The stress strain diagram

is approximated by the shape shown on Fib. 28, in which it is
assumed that no increase of stress occurs with the increase of
strain after reaching the yield point. Applying this to a

rectangular cross section under pure bending as shown in Fig. 25

we can get:

2 _(€rr) ]
Mf - ,é-—Q- . G—/J';'eld Bmf [—3 ( “t ) »

= Tz € (27)
M i _(€y.2) "
W:;P: 3 [3 ( € ) ] ’ (28)

with a limiting value of 1.5 .

Using this approximation for the stress strain diagram, the curve

showing relations between _M_

vs € for
yield .R —€ yield pe

different sections is as shown in Fig. 29.
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Solution 2. Modified Form of Distribution.20

The stress strain diagram is assumed to have the slope shown
in Fig. 30. Applying this distribution to a rectangular cross

section we obtain

M - 3 @Q-n) _ 1-n n € 4 (29)
M yield pt 2 > €Et\2 + € yield pt
( E;P)

where n is the slope of the line representing stress strain rela-

tion after the yield point,which is constant for given material.

Solution 3. Triangular Distribution "Kuntze's Theorz:.29

This theory contends that in pure bending the yield point is
higher than that of tension and when the yield point is reached in
the extreme fiber in pure bending the yielding occurs suddenly for
the entire cross section of the beam, having a limiting moment of
resistance My = 1.1 M&.p. and assuming the triangular dis-
tribution of stress all over the cross section. See Fig. 31. It
is noted alsoc that the outer fiber yields when the tensile yield
limit has been attained in a certain lgyer in the interior of the

cross section such that it divides the triangular stress distri-
bution from the N.A. to the outer fiber into two equal areas.

This theory while it gives reasonable results in isolated cases,

cannot be claimed to have any fundamental basis.

Solution 4. Stress-Strain Distribution Taking into Account Upper
and Lower Yield Points.30

The same treatment as the rectangular distribution is to be
followed to obtain the moment of resistance except the distri-

bution of stress is as shown in Fig. 32.
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Solution 5. Trapezoidal Distribution. 31

The moment of resistance for any cross section can be computed
using the trapezoid as an approximation to the stress strain diagram

as shown in Fig. 33 by the following relation:

C
. ey x &-D) (30)
where Mt = moment of resistance of the cross section for the

extreme bending stress o p

= Distance of extreme fiber from N.A. = D/2

C
I = Moment of inertia of the cross section

)
6 ZG" € de o—
o = o 2——'“’2 m where o— & € are the
° €
stress and strain and 0O, €m are stress and strain in the
extreme fibers.
K = 0.85¢C V % where A = area of the cross section

of the beam under bending.
This method can be put in a tabulated form to make the computa-
tion easy and leads to a relation between o"’m and Mt as shown

in Fig. 33.

3. Discussion of the Previous Methods.

The methods previously shown for calculation of moment of
resistance of a beam under pure bending - whether they are based on

the stress-strain diagram or its approximation are dependent on the

following assumptions:

6l
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(1) The ordinary stress-strain diagram represents the true rela-
tion between the stress and the strain in the elastic plastic
and the plastic states.

(2) The neutral axis of the cross section under pure bending of
any material at any stage of bending remains at the centroid
of the cross section (center in case of symmetrical sections
which are mostly treated).

(3) The stress-strain curve of tension is the same as that of com-
pression for any material.

(4) The lateral deformations are neglected, so that the width of
the cross section at any place is considered still to be un-
changed whatever the bending moment may be.

It seems that all these assumptions ought to be avoided in the compu-
tation since they are all on the side of discrepancy. As was explained
before in Chapter I, the ordinary stress-strain diagram does not represent
the actual relation between the stress and the strain in the elastic plas-
tic or plastic state. Also the stress strain curves in tension and com-
pression are not the same for all materials hut they are completely differ-
ent with a very distinct variation in some materials. These curves are
dependent on the characteristic of each material and such an assumption
of equality is not based on fact. Besides, the assumption of neglecting
lateral deformations ignores an action which has an effect on the value
of the moment of resistance. Moreover, the neutral axis should not re-
main at the centoid of the cross section but should shift due to (a)

difference of the stress-strain diagrams in tension and compression,



(v) change of the.ghape of the cross section as a result of lateral

deformation with an increase of the width of the cross section on the

compression side and a decrease on the tension side.

4. New Method for Computing Moment of Resistance in Hyper-Elastic State.

A new method is now proposed to obtain the value of moment of resis-

tance of a beam in pure bending having the following basis:

(1)

(2)

(3)

(4)

The true stress—-true strain is considered as representing the
relation between stress and strain in the elastic plastic and
the plastic states, using the equation of relationship between
the stress and the strain which was previously deduced in
Tables 3, L4, 5, and 6 of Chapter I.

Separate relations between stress and strain in tension and in
compression as given by the true stress-true strain curves for
tension and compression are introduced.

Shift of neutral axis of varying amount at different stages of
bending is taken into account.

The effect of lateral deformation on the shape of the cross

section is considered.

This method is based on the following assumptions which are backed

by the results of experiment:

(1)

(2)

Plane sections remain plane after bending in elastic plastic
and plastic states.

The behavior of the tension side and the compression side in
pure bending follow the corresponding pure tension and pure

compression behaviors.
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Procedure of the Method.

In this method, the moment of resistance of a cross section of a
given beam under pure bending is computed in terms of a given extreme
fiber stress either in tension or in compression. The relation between
the stress and the strain

€, LS €2 [K€+m]€3
o = [“’e]o + [ ]Es ¥ €,
is used where the values of a, b, ¢, k, m, Gl & € , are characteristics
for each material which are known experimentally for tension as well as
for compression as explained previously in Chapter I. These relations
are shown in Tables 3, L, 5 and 6. The relations for pure bending,

considering lateral deformations, will be as follows:

A. Effect of Lateral Deformation on Relation between Stress and Strain.

For any material considering the tension or compression side in
the elastic state (where the longitudinal strains € = o to € 1)
the effect of lateral deformation can be neglected since the
longitudinal strain € 1 is very small and consequently the lateral

elongation or contraction is negligible. The width of the cross

section "B" from € = o to € 1 Wwill still be practically constant.
For longitudinal strains € = 61 to € , - assuming Poisson's ratio =
0.50 - the lateral elongation on the compression side and the lateral
contraction on the tension side can be taken constant all over the

region from € 1 to € ° Therefore the width "B" of the cross section

between the longitudinal strains € 1 to €, becomes for the com-

. X €
pression side B [ 1+0.5 x €ic +2 ZC} and for the tension side



68

€
B [l - 0.5 4« N 1y + =24 1. The assumption that Poisson's ratio = 0.50

is close to its actual value and small changes in this quantity will not
affect materiall,the value of width of the cross section after elongation
or contraction as previously stated. For the longitudinal strains,

&€= € ° to €3, following the same procedure as for € = € 1 ‘o € 25

1 3 WP s €2c + €3¢
the width of the cross section "B" will be changed to B} 1 + 0.5 P

on the compression side and B [1 - 0.5 « e__2__t__§_€_§_§ l on the tension

side.

Therefore for any cross section in pure bending where the extreme
tensile strain is € 3 and the extreme compressive strain € 3¢ the value
of "B " using the proposed relation between the stress and the strain
and taking the effect of lateral deformation into consideration will be

l. For the compression side:

Bo— =B[ae] +B[l+ _e_ii_e_‘.‘J[bE ] BI}+§£’__._€3][Ke+m]

€3

2

[["‘e] ['*“ﬁz’][be] [” Zfea][Ké+m] . (31)
2. For the tension side:

oo = B { [ae]i' + [i- *G‘][be ]€z+

+[t~§3_;_€—3][KG+MJQ . (32)

This means that to take the effect of lateral deformation into account

1"

assume the width of the section at any layer whether inside or outside
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unchanged and multiply the value of stresses from longitudinal strains

e1*‘62] . A
61 to € 2 by the factor [l + S R for the compression side

€1+ € ] )
and [1 - ————— lfor the tension side, and also from €2 € _ to €

L 2 3
the factors will be: [1+2T“.€_3 ] and [1 - 6__2_'%’_6_;3.3 respectively.
Thus

“ €& bec 1° 1-€2t %3 T ke +m “
- - +
o7 = [ae]o"’[ 7 ][ 1 "'[ 4 ][K ]e (33)
! 2
€, €.t € < P €.t € €4
O = '[mé] + [l +-h4—£][be + :+,£.L_§J[K€+m]
' o ~€, 4 e | (34)

2

Knowing the effect of lateral defommation on the relation between the
stress and the strain, the position of neutral axis and the moment of

resistance for the cross section of a beam under pure bending can be

known.

B. Position of the Neutral Axis.

For a given value of extreme fiber tensile stress ¢ £? the corres-
ponding strain € , equals € 3¢ can be obtained using the true stress

true strain diagram. Then, using the fundamental relation that the
€

3t
tensile force = the compressive force in pure bending i.e. JW{ dA =

€ L

3¢

= ej o6 - 4 A and substituting dA = Bdy = B(de as shown
reviousl
P usly e_t ¢

° )

Substituting the value of © 4 and o~ as given in equations (33) and

(3L4) to take care of the lateral deformation



jBR [(ag) tr 0 Gt Cot) (p¢ )2: 4 G- SepSnkerm) ™ {de

€
_ J’ 5( [(ae):'c+ O+ f’i;r—eif)( bE )6:+ (+ e—“-:;—e—ﬁ-)( K€+m):::J de
(36)
In the above equation { cancelled from both sides since the curvature
is the same practically for the tension and compression sides. Also B
cancelled for constant width section or its value in terms of § , € 3
and € can be substituted for variable width cross section as shown
later where € = longitudinal strain at the layer whose width is consi-
dered, €3 = 63,0 which is known from the given stress 0_/3;b for the
tension side or € 3= € 3, required on the compression side. The values
a, b, ¢, k, m, € 12 and 62 are known as properties of the material.

Assume for simplicity of computation with negligible error that the
value of the factor [ 1,62 +€3c] - [1 LE2.+ 631.,]; this will

not change the factor materially. Then from the above equation (36)

the value of € 3¢ the unknown can be easily determined and consequently

€4

- t

the value )’t_ D x E—B—;‘Tﬁ (37)
c

where y g = distance of neutral axis from extreme tension surface,

D = depth of the cross section. Therefore the position of the neutral
axis can be determined. The same procedure can be applied to get the
i position of the neutral axis for any given fiber in tensile strain

whose value lies between € ; up to the longitudinal strain at the

failure of the material in tension.

C. The Moment of Resistance.

Since the internal moment = the external moment then the value of

moment of resistance as derived before 15.

r, = (‘e—[::_é') [jB ede +f5°“’ Gde] : (38)
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For any given extreme tensile stress 0"3t, the wvalue éf3t is known from
the true stress-true strain diagram and the position of the neutral axis
is known as previously discussed; therefore €'3c is known. Introducing
the values of¢7‘% and o, where the effect of lateral deformations are

considered as shown in equations (33) and (34) in the above equation (38)

then the moment of resistance will be:

B D? it t‘f’ €t be Ez'rffst Kefm) de
Mt"(ewe) {jae[(ae) + (2= ) - X ]

€
3c
€ . c fac €yt Eac Ke+m ]dﬁ .
1,,]86[(“5)0 +(!+—€£;—-‘-5)(5€‘)e +(1+ =3 X )ezc
‘< (39)
In the right hand side of this equation every term is known therefore
the moment of resistance can easily be obtained noting that the integra-

tions needed in the computation are of a very simple type.

S. Application of the New Method for Various Cross Sections.

The values of (f’t and or’c in the following discussions are the

values of g— where the effect of lateral deformation is taken into

consideration, as given by equations (33) and (34) as follows: ,
o7 = [a.e] + [1- &< a][be J a-i‘[! 62163}["&_“"}
e = [aé] +[H~e'+ & [be ]ez [H-e“"e ][K€+m]e3

A. Rectangular Cross Section (Fig. 3&)

a. Position of Neutral Axis:

eija*’t,alﬁ = ecf'f"f*dﬂ ’
}o’dﬂ - }o—lﬁdj = J‘o-’ﬁﬂd'e )
€
5(%0—; de = 5Q~cfd“z'de ’
€

tjo—i.dé ‘-‘-ecj‘_é*d‘e

©

(Lo)
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Therefore for given o7y i.e. € L the value ¢ c is known and the

position of neutral axis can be located.

b. Moment of Resistance

The value of moment of resistance as shown before equals:

DZ et ec
= — . de
e+ 2y [ Yorzese #Yoozear]

Since B = constant
2 € €
Mt= ___B_I_J._—z.[;jo—t’ed.e +cjo—c’ed.€ ] . (41)
(€, + €.) > o
For a given o—’t, € t is known from the true stress-true strain
diagram and € ¢ 1s known from equation (40), therefore the value of
moment of resistance is known by substituting the values of the terms
of the right hand side of the above equation and computing the shown
simple integration. As a special case of the rectangle, the moment of

resistance of a square cross section will be:

3 €
D” . [f c
M= eorege LisFete + Jo< cde | (12)
B. Square on Edge. (Fig. 3k)

a. Position of neutral axis:

Referring to Fig. 3L we have: for the tension side

= (y, -¥)

t
= 2y, -9 = 2€ (6 -€) . (43)

w Nl

Similarly for the compression side:

B = 20 (€_-€) . (L)
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jc’.dﬂ - JB(‘T"’LG = 2(2[6‘:";_ fo-‘d»G - fa“’e d-el .
e Soan 2 oz an

Therefore t J -de -~ Jo—’ede = € c py
Q

For a given cr"t i.e. € & then € c is known and the position of the
neutral axis is determined.

b. Moment of Resistance

2

€ %
D [t o~ e de
Mt (€ +e)z f t of

D - €
since B = 2R (€, .~ €) = (f;Tel) CCtorc =€) (46)
_ ZD i € 2
My WCTS: {[et. [or ede - jcr/t € de}i'

< g
+[€c*!<f: ede - of“‘é ede |1 (u7)

Since for a given o—/t, every term on the right side is known; .. Mt can
be determined.

C. Trapezoidal Cross Section.

a. Position of the neutral axis

Referring to Fig. 34 we have:

z, = Bp-By . Y
2 D
2z, = By-By . (€,-¢€)
(€y +€c)

7h
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i

__ 1 _ e +B€ + Be€ -Be _(az-a)e]

Bt_(et"'ec)[lt 1 € 2t 1t [

! -(B,-B)-€

B, = ~— | (BE+BE)~-(B-F . (L8)
BZ‘B! ytﬂ_ B2-B, (e+€)

AMso B, = B'+2Zc where £, = 2 D 2(e+€)

820 (e ve) .

And similarly to B, Bc will be:
Be =('?:7€)" [(B€ +B,€) + (62-5,)..5] )
€ €
tSd‘t’ dA = tj Bze"'? de .
° i € ¢ o
- (-El%'-‘é—)' [(B,ec+Bzet).ja; de — (62*5,);[0}'.& e] '
< <

Therefore the position of the neutral axis can be obtained from the

€, €
¢

equation: JO’““':'dﬁ = j'o—é dA , or
2 L)

(L)

< N
(86 +B,E) Jagde - (B,-B,) [oi-€ de
<Q <

% g%
:(G‘Ec'f'ﬁzet).jq'—c’ de + (53 BJ) !o"z’ . € de . (50)

For a given o—’t, the value of € c can be obtained from the equation

which determine the position of the neutral axis.

b. Moment of Resistance

We have o € €
. [J'sto-;ede + JBco‘“Eed.e]

My

(et*'ec)a

i ) _(B. - )
Bt = EE:—-}-GC) [(B|€c+526t) (z 54) e]



/‘7/50 Bc

B — -B)-
O [(Be.rBe,) + (B,-B) < |

2 € €
M 0 (BE +Be)tj de —(6 —B)tc*' € oLe]+
t - (et+€c)3 [ * 3 E 2 ‘o +° .

(=
<

+{(BerBgy Jf’“edte +‘52‘”B";,J°’°"€a““]}' >

For a given o—’t, € % and € ¢ are known and also all the terms of the

right side of the above equation can be easily computed; therefore

moment of resistance is determined.

D. Circular Cross Section.

a. Position of the neutral axis

Referring to Fig. 34 we have for the tension side:

= (R+y -vy)
2 2 - 2 _ _ 2
.g = ‘/R -z = JF\’ (R'i'y jt)
_\2RY, +2YY, -2RY -¥*-3% .
= 2 V—ER(yt—y) ‘(J:—Zj:’t+jz)
c 2V IROL V) = (V)2 sV (Y- Y)ER-%H)

= ZR(EUG)' Q[(thec)—-et_—’-E]
2 ~e)(€, re)

(Vie €
2fye.e + € (&-€o) - €’

2 _e(&t- C)
B, = 2 V€. € {l - [e e - ]} (52)

Using the Binomial theorem then:

H

i
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2 2
‘ l‘a [ez..e(éf-'e‘cl]_’_ %(%l[e - e (€¢-€c) —
B, =2{ Ve )1- € €, 21 € € .

Neglecting the 3rd term of the binomial and over
2
€ -~ € (€ eﬁl_
B, = 2{ V€€ {' B [ 2€,.€ . (53)

Similarly for the compression side:

e’-¢ (ec“et)}
B, =2(V&& {' - [ 2€, €, | (54)
€

H

€ 5
Using the relation j oz - dA = JO’{ .déA
Lo ] ©
to get position of the neutral axis we have: < et R
e € 2 d__ e €ed
- . g .de - €+
of . dR = IB(o';de = 20 Vg€, ! t *€ ~2¢¢€ J#
(] ©
%
(fL;ic_), jo;«e de] .
zetec S
Therefore: c e
% (€¢ - &) j]-o-“ ede L jo*’ 62 de
- t' — — - - -
;[q de ¥ 2 etec ° ZEfec o t
3 & & .
o—-fol.e-g-(_ei:fi_)-‘ o—.€.de — 1t .Jo—;-e.de .
¢ 2 €,6€ < 2 €€
o t ¢ o t7c o (55)

For a given (- et is known, therefore € c can be computed from the

above equation. Then the position of the neutral axis is determined.

b. Moment of Resistance

2 % €
N 2 e——— B €Ede + € de
t = (€ +€) .j* * oj‘ ‘

The values of B, and Bc having the form shown in equations (53) and (54)
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€ €
€ t
t €,-¢e. * 2
B,oyede = 2¢ {\/Gth-SoTede + L C-Jc}’.e.de—
o * [ 2 e‘tec o
€
t 3
[}
o= . € de }
t
zve € 3
= ___Z_D__ x [ same above expression‘
(Et-t-ec)
3 € €
- 2D t €,-€. ¢
T ey LY Jeede ¢ 2% e
. t"r [ o 2 e‘t-ec o
i SJ 3‘1 \/-— % d
- - Jog € e]+ ee.Jrge € +
t e
ZVetec o o

€

€
¢ 2 <
+ Ee=St e € de - ! .jo;'.GB.d.G] , (56)

For a given value of a"t, € &’ and € , are known as before; then
introducing the value of o~ ¢ and T in terms of € where the effect
of lateral deformation is taken into account as previously shown, the

integrals can be computed and moment of resistance can be determined.

6. Theoretical Application of the New Method to Beams of Square Cross

Sections in Pure Bending for Different Materials.

Computations for the position of the neutral axis and the moment of
resistance for beams of square cross sections of different materials in
pure bending were carried out using the new method to show its validity
and the behavior of these materials in the pure bending. The materials
discussed are: (1) Mild steel (2) Stainless steel (3) Aluminum and
(4) Magnesium. A sample computation for one material will be given,
then followed by the result of computations for the four materials using
the data of tension and compression tests from the outside specimens and
the inside specimens for the relations between the stress g— and the

strain € shown in Tables 3, 4, 5 and 6.
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A. Sample Computation for Mild Steel.

The relation between the stress and the strain is taken for this
sample as obtained experimentally for the inside tension and the inside
compression specimens using Figures 11, 12, 13 and 1} as shown in Table 3.
The expression used in computation for each state of stress--elastic,

elastic plastic, and plastic--will be shown, and calculationswill be given

for one point in each state.

a. Position of neutral axis

1. Elastic state , €, = 0 to €, = 0.0011
o = 296 x 10°%€ | o, = 30 x 100€
% b de
] 7 ol€ = ojo“é .

Practically, the shift of the neutral axis is very small and can be
neglected. Therefore there is no appreciable change in position of the
neutral axis in the elastic state, and the neutral axis remains at the

centroid of the cross section.

2. Elastic plastic state iy et = 0.0011 to € = 0.020,

p 4
€
! o:00ll+€¢ e oo+ €t
j(:———-a———)o‘; de = J(a—r p ).or de

Q.00(} c.ooN

o3 = /92000 € + 32000

g¢ = 220099€ + 32599
€1

f (1- _‘:ﬂ'.r_f—f—)(’quaoe +32°°“)-0L€
4

NP e‘?j (1- 220 ) (220000 € + 32599) e
a 2

o.00ll

2 »
(- o,aa:;-r- et)( 9.6 € +3.2€ -° 003532)

sall+ € 2 € —9.993588)
=(l+ao°::’ ty(ne +325¢ )



Using the above equation, for any given value of € t-which corresponds

to a certain value of the o~ £ extreme tensile stress,--the value of

€ . the extreme compressive strain can be calculated.

Take the extreme tensile strain € N

= 0.010 which corresponds

to 64 from the true stress true strain diagram to ¢~ v = 33,000 psi.

Then:
- o.aaf|+ et) _ ( j - 0,00114.1- c.0l0 ) - 0.9972
—————'—‘4 =
o.ools'f'et) - ( I+ o.call+ 0\'70) = I-OQ‘28
1+ 4 B 4

2 .
0. 9972 ( 9.6 no.ol 4 3.2 xo.0l — a.e0 3532)

F4
~ .00 28 (” €, + 3.25 €, "0‘003588)

. 525 + 0.0036 ) — o
i1.02 Ecz + 3.26 €, — (o000 95T+ 0.0319 —~0.0°3 )

= ©
o2 € 4 3.26¢, — 0032332 =
3.26 + /(-3‘26)2- 4 x1j.02 8 3.032932
€ _ -3
< 2 x /.02

~3.26 +3.4799
2z.04

i

ec - 0-00395‘

Yt = distance of neutral axis from the tension side

= et
ec"‘et
0.010 - D = 0.502D where D
0.00995 <+ 0.010

= depth of cross section

Shift of neutral axis towards compression side = 0.002 D
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3. Elastic plastic state ({i) €¢ = 002 to €, = 0.19

o—~t = 137.5 x 103 e0.3h9
e = 7.5 x 10> . 2-283
c.02 et € 3 e.349
S (1- i?_ﬂé/_t‘.’fﬁ.)(:‘)zoqoe +32000) d€ 4 f(,-‘L‘%i'*i)(f37,s xto . € ) de
Q. 09§ %.02
€
s.02 [+ 6 3 . 283
- j(H- -‘-’—'—‘-"-'%‘3—"—‘33)(zzooooe+325°°)de+f(l+ 2:‘-’%’1—1-“)("7,5 "o-€ ) de
-o.oou a.02
o .02
a.00ff 4 ©.02 - o,q‘l47 & ('+ _9__-3_”_'_"_2_:_) = {0053
(i- ——";-—') = 4

&
z
0.02 o2+ €ty (1375 K349 3
/92000 ez 320006) + (I- - oi )(I 349 # ° )
t0.9947 (U2 € + ' °

o .c0f}
1.283 p
o & pazsoce) S 4 (1 2ZEEH(MET €7, )%
-]
= 1oe53 (2552 € #32500€) o

347
/ - ﬁ.t‘it)(;oze -0.523)
o. 9947 (96x0.00039877 + 32x°.¢/89) + (4 7 +

1-2
2t €t
10053 (110 xo-00s39817 +32.5 xo-2189) + (1+ 22E=2) (1.6 &

Therefore : . 1.349 523)
064 4 (1- ZGE=E) (1026 o

. 1.283 615)
02t St .6 € — ©.
0.662 + (1 + =— ) (916 &

For ¢ t = 0.14 which corresponds to 6 = 67,000 psi.

(1- 202 1— 01 ) | (1-o.ou) = 0.96
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(1 + 0.02 -:‘- 0.1h = (1+ 0.04) = 1.04
102 x 0.1yt = T.2.
1.283
1. 283
1.283
= 1.028 _  4,0738
c = 523 73
log € = log - 0738 _ 2.8681 _ -1.1319 _ 5.8y = 1.116
¢ 1.283 1.283 1.283
ec = 0.1306
Yt - ____G_t hd D = O. l’* . D - Oolh . D = 0-518 D -
€t +€, 0.1L + 0.1306 0.2706

' Shift of neutral axis towards compression side = 0.018 D .

O'—’t = 60,0“) € -+ 60,000
6—c = 60,000 € + 60,000
0.02 e 'q 19 3z 349
J(' °¢"+c °Z)(I‘]2010 € + 32000) de + J‘(; 2_;‘..52:__)(’375”0 c ) de +
0. qe” e . ‘Z_
* 19+ €£y/ ¢ e § ) 4
‘_ o 000¢ + 000o €
+ j (- — N
.19
.02 o-17 e.282

24247
J (1+o:slitoc2 (220070 €+ 3zsoo)a¢e+J(:+ _“_;-— (N?Sx,o € )de+

o.aeff ¢.a2

N CJ(I-I- c.llfei:)(@:)ooo € + 60000) de

.19
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Therefore ,
. € _ ]
064 + 9-8 + (n~1."'zt-—*)(3° €, +60€, ~(2.48)
2
—0.662 + 108 + (I+ &L"}fﬁ)(ao €, +60€—1249)
i.€.

(1- =LEEE)(30 €, + 60€, — 12.48)
= (1 + 2198 (30 €l 4 60 €, ~12.48) + 1-022.
= 7

For € ¢ = 0.6 which corresponds to o~y = 95,000 psi

(1 _ 0.19 + 0.6)= 0.8025 and (1 4+ 2:09 + 0.6) = 1.1975.

Therefare 2 2 12.48) o 1022
o.8025(30X0.6 + 60x0-6 —12.48) = 11975 (30 € +69€ ~I24 )+

34.32 = 35.92 € + T11.85 €, - 14.95 4 1022

35,92 ecz + 1.85€_— 41.47T8 =o

€ = 1Tt ZZAAE 41468 = 0.468.
¢ - -85

Y, = distance of the neutral axis from the tension side = €t e D
€t+ Gc
0.6
= e« D = 0.562D.
0.6 4 0.468
Shift of the neutral axis towards compression side = 0.062 D.
b. Moment of Resistance
l. Elastic state €y = 0 to et = 0.0011

o"t = 29.6 x 106.6 and Lo 30 x 106-6.
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Since g~ t and o— o are about the same in the elastic state, take

6
0t = 06—, = 29.8 x 10 . € and therefore et = €, =€
< €,
M = [Jd‘-’ed.e -§-fo—g€det\
2 b 4
(et+ Ec) b, o
€ 3
2 & O . 6
M - 2. JZ?.&E.dEﬂ@: sz * 2726 1o
(2 <s)2 o
s 3
M = 4.965x10.€ -D where D = side of the square
cross section

For € ¢ = 0.0011, Gt = Gc =€ , o—’t = 32,500 psi.
Therefore M = L.965 x 106 x 0.0011 - D3 = 5162 D .
2. Elastie Plastic State (i) E"b = 0.0011 to 0.02

o7y = 192,000 € + 32,000

6—c = 220,000 € + 32,500

DS o.woll 03 e’ d' EC

M o= z“zjrr*’eote + pe z'[J%e e+J%'ed€]

(et+6¢3) o (€t+ c) o ool o.ocoll

-3 3 3
M 26.45x1° D

" (€,+€,)° +(et €.)?

[ _a. o-u+€t)(!l§.‘2.°—° €4 3200 33°°‘ 6 - 1.9435 )+

3 2
.aol{+ € 2599 ¢ .
-{-(H‘q 4/'0- c)(ZZosoca ec .}.3_2__6': i 3747)] .

For et = 0.010, €c = 0.00995 and 0""t = 33,000 psi, then
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-3 3 3 3 2
M = 26.45 xlo . D + _____2____,___.—2 1o.9972 (64mxa-ol+16m)(a.ol - 1.7435)"‘
(o‘olo+o<o°9?5) (o0 .9t0 +0-0°795)

3 s z
4 10028 (13.3!!03)(4.00?95 +16.25x10 xo.20995 - ’*?74'7)]

3 3
3 D’ 16400 + 16720) ~ 66.6 D™ + 835° D
¥ = 6.6 D + 3(”(

M - 8416.6 D3«

« E1 i i
3 astic Plastic State (ii) €, = 0.02 to 0.19

o—¢ = 137.5 x 107 . e0'3h9

o~e = 117.5 x 103. 60'283

a.coll

c.02 0.0
D3 de
2forede + ey [ Jowede +Joede |+

= 2’
(et-i-e) oc.oolf
C
[J ogiede + JO;‘E e de ]
(€f+€ ) 0.020 0.92Q
W oo 26450150 + =22 . p vva-*er x
(e, +€.)*2 (€, + €.) + (e: + €, ) (- )
3 2349 € nt.3y
1315 .0 002+ €c ,uo 6 - 6.77
1315 o€ 5‘.35)+(i+ A 753 )] .
For €, = 0.10, €, = 0.0933 and ¢}, = 61,000 psi
w o 2645x48° P 13.53 D3 D2
0.]0 + o (o.IOfo.o‘I ) (o.lo+0-°733)
3 2-34"

3
x(58.5x10 x| _ 5.85) 410284 (5/.4x/0 x0.0933 '6'77)]

M = 0.708 D + 362 p° + 12,800 D3 - 13,162.7 D°.
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k. Plastic State €4 = 0.19 to 1.13
¢ = 60,000 € + 60,000 and a—’c = 60,000 € + 60,000
a e.00ll 0.02
M = ._P__ 2 -Jo—ede J-a—/ed.e+ o-ede |+
(€, +€.)? € ¢
-t —+ C o (e + ) o.caff g .col
3 o9 0.i9
D ™ o
+ 2 J ‘7,,—2 Ex€E + J o— e€de€ ]
(e, +€)° L7, 2, C
b2 [ Jemede + o ca
(€t+€c)z AT j% € € ]
M = Z"45Xf°-3 D 13.53 of9 3 3
= ‘ AL S 3 2133 . D
(ep + €.)° ;- 0° 22—, D+
t ¢ (e'tfec') (€t+ec)
3
D 19 60006 ‘ oo _ 2
Tl [(, w9 ery fege € 4+ ool —1222) +
t
e SN Ga99° " — 1222
+('_'_o.l.9‘f'__£)(°l°°3 E& + 22— 7 )
For €, = 0.8, €, = 0.578 and 6, = 107,000 psi
M 26.45 xlo-3 D3 13.53 _D3 5 2133 ‘Da+
(o-&+°'578)2 * (a.5+o~578)2' (0-8+9.578)°

3 2
D 2a9aa Ko 8 +3‘°°°K° £ - IZZZ) -+
D Jeasas(

+ (4,6+c.$18) oco X . 8 — IZZ.Z) ]

- 1142 (20eweke5T4 ;430

¥ = o014 0° 4+ T46 D° + 130 D + 19200 D

3
M - 20 337 D «
B. Results

Computations as shown in the sample discussed before in (A) were

carried out for the four materials: mild steel, stainless steel,
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aluminum and magnesium. These were made for different points in each

state: elastic, elastic plastic and plastic states using the data of the
tension and compression tests shown previously for outside s‘pecimens and
inside specimens as given in Tables 3, L4, 5 and 6. The resﬁlts of these

computations and the Figure numbers of the graphs showing the relations
between o~y vs M,, o~ vs shift of neutral axis, € ; vs My, and € t

vs € c are shown as follows:
Figures of the Results

Mild Steel Stainless Aluminum Magnesium

Steel
o~y Vs My 35 39 L3 L7
€ Vs M, 36 Lo Lh L8
06~ Vs shift of N.A. 37 i us L9
€y Vs €, 38 42 Lé 50

7. Experimental Verifiecation of the New Theory.

To verify the new theory, tests were made on beams with square
cross sections of mild steel, stainless steel, aluminum and magnesium.
These beams were subjected to pure bending by equal loading at two
symmetrical points from their center. The test equipment, procedure
and test results follow.

A. Test Equipment and Procedure

a. Loading system

The same Riehle machine, Fig. L, which was used for compression
and tension tests, was used for the bending tests to give the locad at
one point. This load was transferred to the specimen at two points to

obtain pure bending by the set up shown in Fig. 5l.
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be. ecimens

Square cross sectional beams 32" long and about 2" x 2" in cross

section were sawed from bars 8 ft. long as shomn in Fig. 5. The bean

waé'supported on two free supports with a span of 28" and the loads were

applied by free supports at the two points each 6" distant from the

center line as shown in Fig. 51.

c. Strain gages

Three types of gages were used:

1.

Baldwin SR-}; electrical gages, tyve A-7, of gage length }“,
120 ohms resistance, and gage factor 1.27. Four gages
were located on the vertical surface of the central cross
section of the beam. Two gages were located on the upper
surface of the central cross section one longitudinally
and the other laterally. Two gages were located symmetri-
cally on the lower surface of the central section.

17-4 post yield strain gages of 120 ohms resistance. One
was located on the upper and the other on the lower sur-~
faces of the central cross section. Both were located
longitudinally.

Clip gages for measuring high strains as explained in the
Appendix, page 203. One gage was placed on the upper
surface.of the central cross section to measure the longi-
tudinal compressive strains, the other on the lower surface

for the longitudinal tensile strains.

The location of gages on the specimen is shown in Fig. 51.

105
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d. Strain Indicator

Two strain indicators were used. One was a Baldwin type K with a
range of 30,000 micro inches used for all gages except the clip gages.
The other was a Baldwin type K of older design with a range of 10,000

micro inches, used for the c¢lip gages only.

e. Strain Range Extender
This was a system of resistances, made by Baldwin, which could be
attached to the strain indicator to divide the readings‘by“five. There-
fore the range of measuring strains is extended five times i.e. strains
can be measured up to 15 °/ deformation. This range extender, the strain
indicator and the specimen under load in the machine are shown in Fig. 52.
f. Ames Dials
Three dials were used to measure the deflections at the central
point and at two points each 4 inches distant from the center. Each dial
had a minimum reading of 0.001 inch and maximum reading of about 1.00
inch. A reading of 0.000l1 inch can be read approximately. These dials
were fixed on a frame which rested freely on pins through the center of
the cross sections of the beam at its supporting points as shown in
Fig. 51.

g- Test Procedure

The gages were attached to the surfaces of the beams at the loca-
tion previously mentioned, following the usual techniques. The gages
were allowed to dry five days and four nights i.e. about 110 hours.

Then the specimen and its supporting and loading equipment were placed
in the testing machine. An initial load within the elastic limit of the

material was applied cyclically at least four times to stabilize the
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electrical gages and to minimize the zero shift. Then the zero reading
of each gage and the zero deflection reading of each Ames dial were
recorded. The load was applied in increments and each time the readings
of the strains and deflections were recorded. The loading stopped when
enough deflection (with corresponding curvature of the specimen) was
reached such that no further deflection could be safely handled with
this testing equipment. Then the beam was unloaded also in increments
till the zero loading was reached; this was followed by loading and un-
loading again. Strains were recorded throughout these cycles of loading
and unloading.

The above mentioned tests were run using the slow speed of the test-
ing machine and all the readings made were taken by the writer only.

The mild steel beam in the testing machine is shown in Figures 52
and 53. This specimen is shown in figure Sh~A after testing. The speci-
mens of tested beams after bending are shown in Fig. 54-B.

B. Test Results

The previously mentioned pure bending tests for beams of square
cross sections of mild steel, stainless steel, aluminum, and magnesium

show the following results:
(1) The experimental data of the value of the moment of resistance
of the central section shows close agreement with the theoretical
values obtained by the new theory derived on pages 71 and 73. This
agreement is illustrated by the theoretical curves drawn between
6, V8 M, and €¢ vs M, and the experimental results given in
Figures 35, 39, 43, L7, 36, 4O, Lk, and 48. It may be noted that
the tests were carried up to a maximum strain of about L /
deformation which is the maximum value obtained by the test

set-up used.
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AG 54-A
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FIG.54-8 - BEAMS AFTER TEST
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(2) The shift of the neutral axis for the central section of mild
steel, stainless steel, and aluminum was towards the compression
side whereas that of magnesium was towards the tension side as ex-
pected by the new theory derived on pages 70 and 71l. This is shown
theoretically in Figs. 37, L1, L4S, and L9; experimentally this
shift is clear from Figs. 55, 56, 57, and 58.

{3) The theoretical values of the shift of the neutral axis for
the case of magnesium agree with the experimental results as shown
in Fig. 49. The shift of the neutral axis for the other materials
is so small that it did not show up well experimentally with a
value to be compared with the theoretical but in the case of mag-
nesium a larger shift up to 0.072 depth of the section was reached.
{(4) Figs. 55, 56, 57, and 58 show that the strain distribution
over the central cross section of all the materials tested is
linear up to the maximum strain of 4. This verifies one of the
assumptions made for the new theory.

{S) Poisson's ratio changed gradually from its original constant
value in the elastic region up to the value of 0.5. It was noted
as shown in Figs. 59, 60, 61, and 62 that in the elastic state
Poisson's ratio for the tension side equals that of the compression
side of the bent beams but it began to differ for tension and com-
pression at the end of the elastic region tending however to reach
the value of 0.5 in the limit. It was also realized that the
maximam value obtained for mild steel on the compression side was
0.55 whereas it was 0.45 for the tension side; this gives an
average of 0.50 for both sides. These values may be influenced

in part by the transverse sensitivity of the SR-4 strain gages, a
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factor which was not taken into account in the calculations. This
shows that the assumption in the new theory of the value of the

Poisson's ratio of 0.5 is valid around 3 to L / deformation, but
this assumption is an approximation from the beginning of the elastic

plastic region up to 3 /. deformation. The assumption in this men-
tioned region has a negligible effect on the new theory for deter-
mining the moment of resistance and the shift of the neutral axis
as shown on page 68.

(6) The widths of the compression and the tension sides of
aluminum and magnesium beams were measured for the maximum strain
reached in the test and their values were compared to those men-
tioned by the new theory shown on pages 67 and 68. The comparison
shows close agreement as follows:

a. Alumimam

For the Tension Side Theoretically
' €,+ € _o.call+ 0-04l5
Width = B (1-o.5.—5— ) =225 (-7 )

2.226 inches -

Experimentally Width = 2.228 inches .

For the Compression Side Theoretically
€. +E o.0o(l+0.0383
Width = B (i+ 05 . —=) =~225(+ Z )

- 2.27 inches .

Experimental Value = 2.30 inches.

b. Magnesium Following the above similar way we get:

Theoretically Experimentally
Tension side 1.978 1.980

Compression side 2.021 2.025



(7) It was observed that the tension side after bending was

laterally convex but the compression side was laterally concave
c

i.e. ~W‘ “This is Similar to the theoretical result shown
T

on page 225 of "Timoshenko, Theory of Elasticity.®

(8) It was observed during the tests that the magnesium beam in
pure bending showed a greater spring back than the aluminum, stain-
less steel, or mild steel beams as shown in Fig. 54-B. This is in
the same sense as the theoretical curves given later in Fig. Th.
(9) The SR-4 gages (A-7 type) failed in tension around 2 7
elongation but those in compression did not fail up to the

maximum strain of L / .

(10) The 17-4 post-yield strain gages and the clip gages showed
consistent readings with those of the SR-4 gages placed on the
upper and lower surfaces where these gages were located.

(11) The beginning of yielding of the tested beams in pure bending
occurred at the following stresses which correspond to the point
where the load defleétion diagrams and the locad strain diagrams
deviated from linearity as shown in Figs. 63, 64, 65, 66, 67, 68,
69, and 70. These points correspond also to the points where
Poisson's ratio in tension and compression began to deviate from
each other, Figs. 59, 60, 61, and 62. The stresses at the beginning

of yielding are in psi:

Mild Steel Stainless Steel Aluminum Magnesium’

37,620 37,620 15,900 36,000
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CHAPTER II1

Springback Curvature

1. Review of Literature

The fabrication of metal structures frequently involves the bending
of individual members to a prescribed contour. The member is bent so
that the neutral axis assumes the curvature Ry (see Fig. 71) and the
extreme fibers of the member are stressed beyond the elastic limit.
¥When the bending forces are released the memnber tends to straighten
out or "spring back" so that the neutral axis assumes a new curvature
Ry. The following methods were derived to compute the wvalue of Rl such
that the final radius after springback will beacertain given value R,.

A. General Method32

As the member is bent as shown in Fig. 71, the amount of lengthen-
ing of a length ds of the extreme tensile fiber will be:
elds where €, = units tensile strain inMin
The amount of shortening of a length ds of the extreme compressive fiber

€,ds vwhere € 5 = unit compressive strain in/in

When the bending forces are released and the member springs back, the

elastic recovery of the tension and compression fibers may be expressed

/ ’ Y /
as: Glds and €2ds, where el and 62 are the elastic recovery

in tension and compression unit strains respectively. (See Fig. 72).

Referring to Fig. 71, the angle change Z resulting from the springback

Eld ’
s

1 or A € st

is: Z = C -
1 C5
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/
It follows that Z = X-Y = 498 - ds €195
Ry Ry c
1
/ e/
Therefore S - 1 - FE1 . 2
R ¢ C,
V4

The elastic recovery &€ can be expressed in terms of an equivalent stress
and modulus of elasticity of the materials: €, = _QE:_ .

Then the bending forces are removed, the total internal moment produced
in the member by these forces must become zero and the stress released
behaves elastically. Therefore when the moment M resulting from the

bending forces is released the corresponding elastic stress release may

be computed by the ordinary flexural formula ¢~ = MC

T
’
Therefore € = 9_. = MC
E i
Consequently: 1 - 1 - or

El=
]
N i

A

b Ry

Where Bl

the forming radius of curvature

R2 = the final radius of curvature

M = Total internal moment resulting from bending forces

=
i

Modulus of elasticity

I Moment of inertia of the cross section.

In this method for a desired known value R2’ the position of the neutral
axis is assumed and the total internal moment resulting from bending

moment M is computed using the tensile and compressive ordinary stress-
strain diagrams and assuming a reasonable value for F.l: M= Z_(O"’dA’C),

There dA = elemental area of the cross section.
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Then this relation should hold: ]FE = 1 M

It is probable that the assumed value of Rl is not exactly correct to

give the desired value of R2,

and another trial made. Two or three trials may be sufficient to reach

then a new value of Rl mist be chosen

the correct value.

B. Approximate Method32

In this method the actual area of the cross section of the member

is considered to be replaced by two hypothetical areas ‘Al and A2 such

that Alcl = A202 and Al+ A2 = Area of the cross section.
M = A07C + A,0,0, = AC (0] +d7),

2 2
I = a0 + ASCS = AC(c + c) .

Substituting in the formula: i = 1 + M then:
B R, H
i = 1 ( iy %3 2) 2 L4 Ti+%3 D = depth of section .
Rl c1+c Rz E-D

Thersfore using the ordinary stress-strain diagrams and the relations:

V/4 c r/4
R yu—— -
2 R2

Since the value of Cl and -62 are known at the beginning due to the

condition A.Lcl = A2C2 and the value of R, is given, then the values of

/4
€, and €’/2 are known and their corresponding values of 07 and ¢ »

can be obtained from the ordinary stress-strain diagrams of tension and
compression. Therefore the value of Rl can be obtained by substitution

in the formula: o] +07

L. 14 1 (Ti+932)
Rl HZ E ‘1'.314--02 '
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2. Discussion

It is shown from the previous illustrations that the general method
for determining the spring back is based on:

(1) The use of the ordinary stress-strain diagram of tension and

compression.
(2) The assumption of the position of the neutral axis for the
material stressed beyond the elastic limit.
(3) The assumptions of the forming radius of curvature Rl using
the approximate method for the first assumption.
(4) The necessity for two or more trials.
(5) The computation of internal moment resulting from bending
forces using the formula M = 2o -dA-C.
The use of the ordinary stress—-strain diagram above the elastic limit
does not describe the behavior of the material as shown in Chapter I.
Besides, assumptions of position of neutral axis and the forming radius
R) may be in error so that more trials are required. Moreover, the

computation of the internal moment M by the formula M = :ESV‘dA'C
is laborious.

Therefore some method of computation is required to determine the
forming radius for a desired radius of curvature R2 through use of the
stress-strain diagram describing the behavior of the material above the
elastic limit. Any assumption either in position of the neutral axis or
the forming radius should be avoided and only one direct calculation of

internal moment should be required.

3. Proposed Method

Referring to the previously shown illustration in Chapters I and II,

the true stress-true strain diagrams describe the behavior of the material

in tension and compression. Also the moment M. and the position of the
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neutral axis can be easily obtained for a given outer tensile stress o—’t
using the graphs shown there based on the previously proposed theory

discussed in Chapter II.

The proposed method based on that mentioned above is as follows:
Assume that the member is bent so that the tensile stress in the outer
fiber is a known value oy which corresponds to the case of forming
radius Rl. Then, the position of neutral axis, i.e. cl and cz, will be

known using the graphs of f’t vs shift of neutral axis shown in Chapter
”
I¥. Also, the value of € 1 can be obtained from the true stress-true

strain diagram using the given value o"t as shown in Fig. 72. Since the

value of G, is already known from the position of the neutral axis and
/4 /4

€, is obtained, then: €, = &9

%

Therefore R2 = .c_l
e”1

The value of R2 is known for the given O"‘;;. The value of the bending
moment M of the forming radius R‘_I. for the given ot can be obtained using

curves of M vs 6, previously mentioned in Chapter 11. Then the value of

M and the corresponding value of R2 can be obtained for a certain tensile

stress ¢, e A curve showing the relation between M and R2 can easily

be made from which we can obtain the moment required for a desired radius

R2.

Therefore to determine the value of forming radius R1 for a known

desired radius R2 the following two steps are to be followed:

(1) From the curve of M vs R2 the value of the moment M can be known

(2) Using the relation: 1 1 M

Y 2 EL =



R2 is given; E and I are known properties of the material and the bent
cross section; M is obtained as above mentioned in (1) then the value of
R1 can easily be obtained from the above relation and a curve can be

constructed to show the relation between R1 and R2.

L. Application of the New Method to Beams of Square Cross Sections of
Different Materials

Using the curves of the true stress-true strain diagrams shown in
Chapter I and Appendix, the curves of tensile stress vs moment of resis-
tance and the curves of tensile stress vs shift in neutral axis as given
in Chapter II, and using the procedure of the new method of finding form-
ing radius, the curves of M vs R.2 and the curves of Rl vs R2 can be estab-
lished for a square cross section of mild steel, stainless steel, aluminum
and magnesium as shown in Figs. 73 and 74. A sample of steps and computa-
tion will be given as follows for a point on the curve of the mild steel:

(1) For a tensile stress or’t = L5 Ksi

(2) Tensile strain € = 0.035 in/in using true stress true

strain diagram of mild steel in tension Fig. 13 (Chapter I)

(3) Then € - o 1-0-%1 = 0.00150 in/in where 33 is the
stress at the proportional limit in Ksi and 0.0011 is the
corresponding strain in/in as shown in Fig. 11 (Chapter I).

(L) Then ellz € -€/= 0.0350 - 0.00150 = 0.63350 in/in
Fig. 72 (Chapter III).

(5) The shift of nmeutral axis corresponds to the tensile stress 0
= L5 Ks;::; equal to 0.0100 D inches (where D is the side of

the square section in inches) using Fig. 37 (Chapter II).
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(6) The value of the distance C, of the neitral axis from the

tensile extreme fiber is then = 0.5 D <+ 0.0100 D = 0.5100 D

inches.
(7) The wvalue of the desired radius R2 = & as previously shown
in page 136 (Chapter III). Then R, = 06%2(3) g = 15.20 D

inches (D = side of square section in inches).

(8) The value of the moment M for the forming radius R1 and corres-
ponding extreme tensile stress s is obtained using Fig. 35
(Chapter IL) M = 10.0 x 103 x D3 1b. in (D in inches)

(9) The value of M can then be computed, since E as given in
EL

Table 3 equals 30 x 106 psi and I = %; ;3 therefore
}_i - 1 and M . 10x103xD? _ o9.004
E 2.5 x 106 pb EI 2.5 x 100 x D4 D
/4
. 1 _ € 1 . 0.0657
(11) Using the relation 1 _ 1 M , then 1 _ 0.0657
= = = 4 = e e
Rl R EI R D
2 1
0.00kL . 1 = 0.0697
+—-—-ﬁ-—- s -R-i 5
(12) Therefore R = D = 14.35 D

0.0697
Therefore for the desired radius 32 = 15.20 D inches, the forming

—

radius Rl = 1L4.35 D inches and the moment required to obtain this radius

R, is M =10 x 103 p3 1lb. in (where D = side of the square cross section

of mild steel in inches). Repeating the previously mentioned 12 steps for

different values of‘d‘%, we obtain wvalues of R2 and corresponding R1 and M

at different points and the curves of M vs R2 and Rl vs R2 as shown in

Fig. 73 and Fig. T4 can be established for mild steel. The same procedure

can then be applied to the stainless steel, aluminum, and magnesium.
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CHAPTER 1V

Yield Strength in Tension, Compression and Bending

l. Introduction

In the last 25 years various investigators have observed marked
increase in the yield point of steel under n&n—uniform stress distri-
bution, e.g. bending, above that obtained under uniform stress distri-
bution as in tension. Others found that the yield point is the same in
both cases. The attempts of these two contradicting groups of investi-
gators to clear up this problem has not produced an entirely satisfactory

solution. Therefore, further experimental investigations are required to

get additional information.

2. Review of Some Previous Tests

(1) F. Nakanishi>>(1931) tested beams of different cross sections

in pure bending and he found that when the outer fibers yielded the stress
reached a value 1.26 to 1.70 times the yield stress as obtained by a
standard tensile test from the same material.

(2) A. Thum and F. Wanderlich34(1932) also tested beams in pure

bending and found an increase of yield point stress in bending over the
tension one, by 35-45 %.

(3) H. Moller amd J. Barber535 (19344) found that the increase of

the bending yield stress was LO% more than the tensile and repeating
the tests in (1935) using X-rays for detecting yielding they obtained
only 13% increase.

(4) E. Siebel and F. H. Viereggg36 (193)) found increase of 28%

of bending over tension yield stress.
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(5) F. Rinag127 (1936) found that bending yield stress equaled
the tension yield stress and no increase was marked.

(6) F. Bollenrath and J. Shmiest (1938) reached same conclusion

as Rinagl.

(7) N. Zhudin3' (1939) tested steel whose upper yield stress in
tension equals 1.04 to 1.38 lower yield stress in the same test. He
found that the bending yield stress agrees with the lower tensile yield
stress.

(8) Peterson>° (1946) detected for a steel beam of rectangular
cross section under pure bending, an increase of bending yield stress
of 40% over the tension yield stress.

(9) Morkovin28 (1947) found that steel which did not exhibit an
upper yield point in the tension test, has equal yield stress in bend-
ing and tension. But there was an increase detected for yielding
stress of bending over tension for the steel which exhibited an upper

and lower yield points.

(10) A. K. Ata3? (1947) tested steel whose upper yield stress
equals 1.02 lower yield stress in tension. He found that the bending

yield stress agrees with the upper tensile yield stress.

3. Discussion of the Factors Tending to Produce Different Results

(1) Rate of loadingko- Most of the tests made, were carried out

without considering the effect of rate of loading which, if changed in
tension from the bending tests, will affect the yield stress and con-
sequently fair comparison cannot be attained.

(2) Tensile Test Specimens. Specimens used for tension tests

were obtained in three following ways; this lead to variation of re-

sults in comparison with bending tests.
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(a) Tension specimens were cut from bending bars after they
had been stressed above the yield point.

(b) Tension specimens were obtained from the same material as
the bending specimens.

(c) Tension specimens were cut from the same bar of material
adjacent to the bending specimen to obtain as much homogeneity as
possible between tension and bending specimens.

(3) Strain Gages. The use of various mechanical gages besides

the SR-4 gages might lead under different conditions of experiments to
the variation of results.

(4) Accidental Eccentricity in Tensile Test. This might occur

and therefore yielding was produced on one side of the tension specimen
before the average stress in the cross section reached the yield limit.
The yield stress obtained in this case will be smaller than the actual
one and consequently there was a marked increase between tension and
bending yield stresses.

(5) Determination of yield stress in the bending tests. The

yield stress in bending was detected for the different tests by wvarious
methods which might have had an effect on varying its value.

(a) The appearance of Leuders Lines was taken as a sign of the

start of yielding in bending. This may not lead to an exact value since
Leuders Lines may appear when the plastic phenomenon has reached an
important stage after yielding. If this result were used to compare with
those in tension, there might be a marked increase of bending yield

7
point over that , tension.
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(b) The Load Deflection Diagrams. The point where this curve
tends to become horizontal was taken as the point where the bending yield
stress occurred. This may vary for different investigators.

(¢) Permanent Deformation. The yield stress in bending was

determined by loading and unloading the bending specimens with increasing
increment of load each time till the first detection of a permanent
deflection and strain. The yield limit may not be safely determined by
this method because the plastic deformation set up in a small zone may

be entirely cancelled by the strong elastic reactions of the remaining
portions of the tested specimen.

(6) Existence of Upper and Lower Yield Points fa the Tension

Specimens. Some of the previous results were obtained by comparing the

bending yielding stress with the upper yield point stress in tension.
Other results used the lower yield point stress in tension to compare it
with bending. Another test made a comparison between bending and tension
where there was no upper yield point stress detected in tension. This may
lead to a2 confusion in comparing different results. Besides, the tensile
lower yield point is remarkably constant but the upper yield point is
variable and unpredictable and depends upon: (a) Rigidity of testing
machine (b) Alignment of the specimens in the grips (c) Radius of fillets

in the specimens (d) Inherent stress raisers as surface roughness, resi-
dual stresses, and discontinuities in the material.

(7) State of Yielding Bending Stress. The theorybl shows that the

pure bending stress is a uniaxial state of stress. Is that experimentally
true or not? This may throw a light on the variation of the results and
the increase of the yielding bending stress over the tensile if any.

Also, the position of the bending specimens in some of the previous tests
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might not have been well aligned and torsion occurred beside the bending
causing a complexed state of stress.

(8) Machine Factor. Some of the tension tests were made on one

machine and the bending tests on another machine. This might lead to
the possibility of the varying machine factor in obtaining different
results.

4. Elements to be Considered in the Experiments to Obtain Sound Compari-

son Between Tension, Compression and Bending Results: To eliminate the

factors discussed in III which may affect the result the following points
were observed in the present tests:

(1) The rate of loading of tension, compression, and bending tests
was the same i.e. the speed of the machine all over these tests was con-
stant.

(2) SR-L gages on four opposite sides of tension and compression
specimens were used to detect the yield point.

(3) Tension and compression specimens were cut from the same bar
adjacent to bending specimens as shown in Fig. 5.

(L) Detection of yield point in bending was obtained from the load
strain diagram where the strain was measured by three different gages:
SR-4 gage, 17-L4 post yield strain gage, and clip gage. A check using the
load deflection diagram was made.

(5) To reach a general conclusion--instead of working with steel

alone as most of the previous experiments were done--tension, compression,
and bending tests were carried out for the following materials: (a) mild

steel, (b) stainless steel, (c¢) aluminum, (d) magnesium.
(6) Photoelastic bending test of a square cross sectional beam was
made with care in alignment to know whether the elastic bending stress

is a uniaxial stress as theoretically developed or not.
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5. Tests

A. Description

(1) Tension and Compression Tests. These tests are carried out

as previously described in Chapter I for the four materials: mild steel,

stainless steel, aluminum, and magnesiumn.

(2) Bending Tests. They were done as explained before in

Chapter I for the four mentioned materials.

(3) Photoelastic Bending Test. A Fosterite beam 83" length of
square cross section 15/16" x 15/16" was cut from a cylinder 31" diam.,
12" length. It was annealed up to 130°F to remove any residual stresses.
Then it was supported in the frame as shown in Fig. 75 to be ready for a
bending test. The frame having the beam attached was put in an oil bath
and was heated up to 162°F. The beam was now subjected to pure bending,

a moment of 12 in. 1lb. being applied to the central section. With the
load applied the beam was allowed to cool slowly in the oil to room tem-
perature. Then the load was removed and the beam having frozen in stresses
of pure bending remained in a deformed shape as shown in Fig. 76. The oil
bath, the heater, the frame and the polariscope to detect frozen in
stresses during operation is shown in Fig. 77. The beam put in its longi-
tudinal direction was subjected to polarized light and a picture as shown
in Fig. 78 was taken to determine the distribution of the fringes (i.e.
stresses) in the longitudinal direction. A slice X" thick was cut at 90°
to the longitudinal axis. This slice was subjected to polarized light
where the rays are perpendicular to the surface of the slice to determine

the stresses in the transverse direction.



FIG 75 - POSTERITE BEAM BEFORE BENDING

www.manharaa.com
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TT

FIG.76 - POSTERITE BEAM. AFTER BENDING
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FIG 78 - FRINGE PATTERN OF POSTERITE BEAM
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B. Results

(1) The Photoelastic Bending Test. The lateral slice of the

Fosterite beam with bending stresses frozen in did not show any light in
the dark field of the polariscope. This means that there is no trans-
verse stress. The longitudinal picture of the tested beam Fig. 78, shows
well spaced fringes whose distribution is linear as given in Fig. 79.
This denotes that the stresses in the longitudinal direction behave as
those predicted by the theory. These previous observations show that the
pure bending is a uniaxial state of stress if the test is done in the
proper way.

(2) Tension and Compression Tests. The values of yield strength

for the tested materials: mild steel, stainless steel, aluminum and
magnesium are given previously in Tables 2, 3, L4, 5 and 6.

(3) Bending Tests. The values of the beginning of yielding in

bending for the tested beams--which will be compared with tension and
compression yield strength--are given on page 122.

6. Comparison Between Yield Strength in Tension and Compression, and

the Beginning of Yielding in Bending. The comparison is shown in Table

11. This shows that yield strength in tension or compression for all
the tested materials has a maximum deviation of I 10% from the stress
at the beginning of yielding in pure bending. This deviation may be
mostly due to the experimental work especially in detecting the begin-
ning of yielding in bending tests. Therefare we conclude » since the
deviation is sometimes positive and SomefTimes negative , that the
yield strength in tension or compression for any material can be consi-

dered practically equal to the stress at the beginning of yielding in

pure bending.
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CHAPTER V

Summary and Significance. of the Results

The results of the investigation previously reported in Chapters
I, IT, III and IV show the following conclusions:
(1) The relation between the stress and the strain in tension

and in compression for any material is proposed to be in the form:

o~ = [ae] + [be ] + {Ke-o—m]
€=0 e=€, &262
elastic elastic-plastic plastic
where:
= True stress € = True strain

€ ;1 = strain at proportional limit
€= strain at the transition from elastic-plastic to plastic state

€ 3 = strain in the plastic region up to failure

a = constant obtained from the ordinary stress strain diagram
b, ¢, k and m = constants determined from the true stress-true strain

diagram. € ; and € , are constant for each material having the
same values in tension as in compression.

The constant "a" is practically the same in tension as in compression.
The constants b, ¢, k and m are different in tension from compression
according to the characteristic of the material. The relation between the
stress and the strain in this form is simple, adaptable, and easy to apply
as shown previously.

(2) The proposed relation between the stress and the strain is

established for mild steel, stainless steel, aluminum, and magnesium in



tension as well as in compression as shown in Tables 3, L, 5, and 6.

(3) It is shown from the experimental data of the true stress
true strain diagrams in tension for the tested materials that the stress
at the necking point is higher than the slope of the true stress true
strain diagram at this point.

This fact is proved theoretically by the relation:

v * (35

)
necking

necking T (EK necking
where ¢~ = true stress %%E' = slope of the true stress true strain
diagram. g% = rate of change of the load with respect to the cross

section area which is a positive quantity at necking and can be obtained
from load vs area diagram as shown in Figures 21 and 22. The above men-
tioned theoretical and experimental result has therefore to replace the
one given in the literature that the true stress at necking equals the

slope of the true stress true strain diagram i.e.

(%)
necking d € ‘necking

(4) It is also shown from the experimental data of the true stress

true strain diagram in tension for all the tested materials that the strain

at necking has a different value from the strain hardening exponent. The
theoretical relation governing the value of the strain at necking is es-

tabli shed as follows:

dP
m e (-——) .
€ - 1 - dA’ necking
necking (do“)

d€ necking
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where € = true strain

m = intercept of the straight line portion of the extrapolated
true stress true strain diagram with the true stress axis.
The experimental data verifies the above theoretical derivation with
varying percentage of difference for each material.
The value of the true strain at necking as derived before has to
replace the value given in the literature that the strain at necking

equal the strain hardening exponent, i.e.

= C
necking

(5) A new method for treating hyper-elastic pure bending is
derived, from which the value of the moment of resistance for any cross

section will be:

2
M, =

t (e at * e3c)

€3¢
€,¢ o Eat 3
.- | [Be[(@€) "vo- St "y Seginern) Jer

€3¢
Cic €, +€2c ¢ N € ct+€s¢ 30( e
+j56 [(Qe)a +(1+ -—‘i-—-)(be g'c (1S )(Kew:)z]c

where the values a, b, ¢, k, m, €15 e2 and 63 are as previously mentioned
in (1), and the subscript t is for tension and c¢ for compression. D and
B = Depth and width of the cross section respectively. Mt = moment
of resistance of the cross section. This relation can be used to find

the value of the moment of resistance for any given extreme fiber tensile

stress o—’st, since € 3t can be obtained from the true stress true strain

diagram and €3c from the following equation used to define the position

of the neutral axis:
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€3¢
(B8 [(ae) “4 (- E:_”f-z-t)(be?e” v G- fsti—-%(xem)e 1de

3C

- jB([(ae) " + SrEe)(be )EC ¢ (145 )(Ke-rm) (Y de -

Also the values a, b, c, k, m, el, 62 and D are known numerically and
the value of B for any cross section can be replaced in terms of D and
G{. Then the right hand side of the equation of the moment of resis-
tance can be easily computed giving the required result.
€1+ €2 €1+ €
It may be noted that the factors ( 1- and (14 -2 ~2
(- S24%2) e (10 52352)

etc., are introduced in the equations of the moment of resistance and
the shift of the neutral axis to take account of the effect of the
lateral deformation of the cross section.
This method is based on:
a. The true stress true strain relation as proposed in (1).
b. Separate relation between the stress and the strain in tension
and in compression.
c. Effect of lateral deformation is considered.
d. The shift of neutral axis of the cross section is taken into
account.
It is worthy to note that all these basic statements are applied to the
problem of hyper-elastic bending for the first time.
(6) This method is applied to square, square on edge, circular and
trapezoidal cross sections in pure bending as shown in Chapter II.
(7) As a sample of using the new theory of hyper-elastic pure bend-
ing a theoretical computation is made for a square cross section of mild

steel, stainless steel, aluminum and magnesium. The result of the
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computation is shown in Figures 35, 39, L3, and L7 giving relations

between o~ and M, and in Figures 37, L1, 45 and L9 giving relations
between shift of neutral axis and‘r‘i. Following the same method of
comp?tation and using the correspeonding equations, similar relations
between a“%, shift of neutral axis and M£ can be established for the
square on edge, circular, and trapezoidal cross sections.

(8) Experimental tests (see Fig. 51) were carried out to verify
the theoretical application of the new theory of hyper-elastic bending
for the square cross section of mild steel, stainless steel, aluminum,
and magnesium. The tests showed:

a. Close agreement between the theoretical and experimental

results as shown in Figures 35, 36, 39, 4O, 43, Lk, 47, and L8.
b. The plane cross section remains plane after hyper-elastic
bending up to the maximum deformation reached L% as in
Figures 55, 56, 57, and 58.

c. Poisson's ratio varied gradually from its elastic region
value up to 0.5 as shown in Figures 59, 60, 61, and 62.

(9) The designed clip gage shown in Figure 117 proved its ability
as a means of measuring strains in the hyper-elastic region.

(10) The electrical 17-L post yield gage worked successfully in
detecting the hyper-elastic strains.

(11) The hyper-elastic pure bending treatment previously mentioned
is valuable in case of hyper-elastic design and forming of metals.
Economy and better understanding of the behavior of the materials can
be obtained by using the new theory than those given in the literature.
As an example, the relation between (- and M, --using the new theory, the

t
rectangular distribution theory (page 58) and the trapezoidal distribution
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theory (page 6L)--is given in Figure 80.

(12) As a sample of application of the new theory for forming
of materials, a method of obtaining the moment needed and the die
radius required to bend a beam of any cross section to a desired
radius is given. Its application for square cross sections of mild
steel, stainless steel, aluminum and magnesium were carried out result-
ing in the curves shown in Figures 73 and 74 giving the Moment vs the
desired radius, and the die radius vs the desired radius. Following
the same steps similar curves can be obtained for square on edge,
circular, and trapezoidal cross sections. These curves are valuable
in direct use in the machine shop for forming beams of mild steel,
stainless steel, aluminum and magnesium. Similar results can be
achieved for other materials.

(13) The photoelastic test for a square cross sectional beam
of Fosterite verifies the theory that the bending stress is a uniaxial
state of stress.

{(1}i) The comparison between yield strength in tension, compression
and the beginning of yielding in bending for mild steel, stainless steel,
aluminum, and magnesium shows that they can be considered practically
equal to each other. This result disproves the observations found by
several investigators that the beginning of yielding in bending is about

Li0Z greater than the tensile yield strength.

In Summary, it is concluded that the true stress true strain re-
lationship has been successfully applied to the problem of hyper-

elastic pure bending.
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l. Tensile Ordinary Stress Strain Diagrams
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2. Compressive Ordinary Stress Strain Diagrams
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3. Tensile True Stress True Strain Diagrams
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L. Compressive True Stress True Strain Diagrams



190

SR S ..ﬁ'l41,rf-l.a1f|(]-.-a-1.; SIS S & i : R

u‘oammﬁxg}zﬁguﬂm

;
I
. .Amsif..l_,!L

Febepoyer \gmmﬂq \ z@ﬁw _.,,_m:E_ w .,vu ;,wﬁ.ugmﬂo M.mm-._.w,

r
+
: ‘..ﬂ.,ifir J.llwi.i]:---?-i- P R R

b vl.h-.‘\rbl ﬁ Z vv .- PRI R S ;r|_ll|l4|. -
oo : S

|
| AR _
EREE RN z:_,

— ?.W» == N |L __i. v%x*lfl,”.ln h‘lww

——y—

N
I

Ao
1
—
{
1
. L ;
ST
- T N S
0 !
1
|
+
-]
1
1
|

SN R R

R KU

: faﬁai'f? =

ol

Lo

I

]

l .
}
\

?

|

iy H
JAUN SR,

]
l

T
1S794S§3ULS




-




_ﬂ

!

._ - fv|.‘,. B

— ’I»».lvll

.ﬂ

am

ﬁ_

- -— - e *
A
-

'
i

mumm,zauaa

_

fduﬁw.

R
uJ

Eﬁmcﬂc

T
1

SR
|

T
‘

- _,I R

I AR I B S
I 11,|,_FL R TR AR S L
z&._.mnf lerﬂ T T T
el R ~ I DI T R i il U -
R S A N R
O I S S F S L L Sy
b S5 PO O R U I
i SRR
AR [t (P S T R
- e e e
A T LT B U RO RTINS
R ]]\VM]L;V =T mA‘

i 1 |
e l‘sﬁ JE—
; ;
) '
i i i
1
t
i

1
{

'
1
1

1

PR PPN DR
f-.._1—.,..,, - - R——
M o . T

24

ch

.

s

) e A

[~

sy

B




SRR RN TR IS RN D B A FUS T TN A U O O O U N A S
1o e N e FOCE T SO S S A S
R S R S fi_ér?.fi U S T s S S S S S e S R
b L Do ~ [ S SO S VRN LR ST R ) A IS B
© o nowssawawno &_rza_&, LT T i i S AN TS A
T R T
R s_qmeqa_, z_thm unmp_,, SIS Iypgorgld o
B L s P S U B T T Al e e
[ [ [T 4o : :. : Cot . o o T L P e S R
e e e ij, + %_.,.1. P e e
S O SRS 5 S AU S S t#llurllly[\_ilrl-l e LIIL;Ii!. LI o N L e
P P I A N R L
R b ,_:\Ew zamtx upﬁs: ;.%TT,T_.Im. ] e
B e o e i o i
N N (R e e e
ST BBy .

SN BCEEY NERS SO

|

al -

RN LS LA

-
i
]

[y md g
|
; |
R et B e R |

—




194

B o CST S S S

Egi

e rl.IliI,l_ g

SV DU S

lLli.

Rl

[
'

Mi | I&E _ wnm

1.0

3—
ol

|
i
RE

.....

_
ol
SR ) ] . .
F i & :
- B VS DO

SR A B

'
]
i
i

PR S S

J0 NS SRS
e

ji

[ S -3

! .
A DU
i

o

R

2

C b N
PSS S S

f

i

|
b

e

ST
AR
i




195

-

T
Ty

ha B b 0 ]

ST

=H

masups

ja e
it

PR e
Ry

e
s

B 1

janny s

-
31

i
T
1
¥

i
I

3

i

fqen: 158
T

14
T3
benbn

BrEATRY

I

bl plld

SRSTEDS b=

3
jpas

=

[

11

T

FUas

it

T

&

.Fl‘

,.’,l.lﬂ

TR

Ty
T

| g

i

y

Aot
T

e aERReanh.

hEEEH

T

TR

§REunay fud

pRRad dlwdw &

8

i

v+

g -y

ST

T

g
H
+

i

13

byava mie

§3§o8as

1
I

HESRARE

1

L

B

1]

[

[2% say &
T

[ RN

1383
14y

jas




ot

[rpx =

dif

ESsateel

[
Lot

o

LI

ity
Eae

b

-

17

HHS-

]
-
—+

<+

T
H
33

Tl

Lt}
A Dpet]

INEES

cr

T
b

A

pa
-

H .'. T 4. |

=

{++
ok i

IRYEE3
bl il

,’lL!F

Sl tases

bpS pe
e
[pag ohi




197

5. Tensile Logararithmic True Stress True Strain Diagrams
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6. Compressive Logarithmic True Stress True Strain Diagrams
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T. Clip Gage
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Clip Gage

This gage was designed to meet the requirements of the bending
tests discussed previously for measuring high strains, since the SR~}
gages have an average maximum range of strain of about 0.020 to 0.030
infin. It consists of a phosphor bronze strip to which SR-L gages were
cemented as shown in Fig. 117. This strip was mounted on the tested
beams by resting freely thru two side holes on two balls attached rigidly
to supports which were fixed to the tested beams. The fixation was made
either by brazing the supports to the beam or attaching them by a screw
thru a tiny hole drilled and tapped in the beam. The movement of the
two supports will press or release the phosphor bronze strip thru the
préssure of the two end balls on the strip thru the side holes. This
pressure or release of the phosphor bronze strip will affect the ce-
mented SR-l gages. This effect is linear up to 14% strain as shown by
comparing the clip gage reading with that of a micrometer by pressing
the micrometer thru the two side holes of the clip gage as shown in
Figures 118 and 120.

Therefore large strains at the supports are reduced to small
measurable strains by the SR-L gage cemented on the clip gage. The
factor of reduction or the miltiplication factor of the clip gage was
determined by calibrating the clip gage with SR-L gage mounted on the
tested specimen (Fig. 121) till the failure of the SR-L gage: The
mltiplication factor obtained was used to translate the clip gage

reading to the actual strain.
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It was observed that the mmltiplication factor varied according
to the depth of the tested beam and the position of the clip gage on
tensile or compressive side. As a sample, the multiplication factor
for pure compression where the micrometer was used, is 73.8, while for
the mild steel beams 1" x 1" and 1 31/32" x 1 31/32" cross sections in
pure bending, the multiplication factors are 35 and 50 respectively.
Also the factor all over the bending tests carried was around 50 since
the depths of tested beams were 1 31/32", 2 1/L4" and 2".

It is worthy to note that the strain measured by the clip gage
was for the horizontal distance between the fixed clip supports all
over the bending test and not the strain of the curved surface of the
bended beam which is the actual strain. In our case the difference
between the two cases up to 5% deformation, which is over the range

reached, is less than 1% which is practically negligible.
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VITA

Abd el-Kerim Mohamed Ata was born on November L4, 1918, at Rashid,
Egypt. He graduated in 1935 from Abbasiah Secondary School, Alexandria,
Egypt. Then he entered Fouad 1lst University, Giza, Egypt, in October,
1935, in the Civil Engineering section of the faculty of engineering.
After attending five years in civil engineering education, he took his
B. Sc. degree with honor June, 1940. He then joined the government
municipality department as structural engineer from 1940 to 1942. 1In
December, 1942, he was elected to be a staff member of the structural
department of faculty of engineering, Fouad 1lst University, where he
taught full time from 1942 to 1948. During this period he worked for
his M. Sc. degree and obtained it in July, 1945. Then he was promoted
to the post of lecturer "B" on the staff of the university March, 1946.
In February, 1948, he was awarded a fellowship from his university at
Egypt to complete his graduate work in the United States. He entered
the University of California, Berkeley, California, in March, 1948,
where he attended the spring and the summer sessions. During this
time, he was promoted to the post of lecturer "A" on the staff of
Fouad lst University, Egypt, July, 1948. He then enrolled at Purdue
University, West Lafayette, Indiana, in the School of Civil Engineering

and Engineering Mechanics working towards the Ph. D. degree.



